http://iet.metastore.ingenta.com
1887

Solar powered sensorless induction motor drive with improved efficiency for water pumping

Solar powered sensorless induction motor drive with improved efficiency for water pumping

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with a speed sensorless induction motor drive (IMD) with efficiency optimisation. This drive is driven by a solar photovoltaic array for water pumping. The elimination of speed sensor increases the robustness and decreases cost of the IMD. The speed estimation is achieved by rotor flux-oriented control in stationary reference frame. Moreover, the parameters, namely stator resistance adaptation, make the system parameters insensitive. The efficiency of the drive system is enhanced by optimising the excitation current by using a particle swarm optimisation technique. The smooth operation of overall system during starting and steady-state condition is simulated in MATLAB/Simulink environment and validated on a prototype developed in the laboratory. The efficiency of the system with loss minimisation technique is compared with the conventional IMD. Simulated results comply with the test results and a comprehensive comparison is made to validate the suitability of proposed system.

References

    1. 1)
      • 1. Sahoo, S.K., Bhattacharya, T.: ‘Field weakening strategy for a vector-controlled induction motor drive near the six-step mode of operation’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 30433051.
    2. 2)
      • 2. Smith, A.N., Gadoue, S.M., Finch, J.W.: ‘Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 270282.
    3. 3)
      • 3. Bhattacharya, T., Umanand, L.: ‘Improved flux estimation and stator-resistance adaptation scheme for sensorless control of induction motor’, IET Electr. Power Appl., 2006, 153, (6), pp. 911920.
    4. 4)
      • 4. Soto, G.G., Mendes, E., Razek, A.: ‘Reduced-order observers for rotor flux, rotor resistance and speed estimation for vector controlled induction motor drives using the extended Kalman filter technique’, IET Electr. Power Appl., 1999, 146, (3), pp. 282288.
    5. 5)
      • 5. Al-Tayie, J.K., Acarnley, P.P.: ‘Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended Kalman filter algorithm’, IET Electr. Power Appl., 1997, 144, (5), pp. 301309.
    6. 6)
      • 6. Verma, V., Chakraborty, C., Maiti, S., et al: ‘Speed sensorless vector controlled induction motor drive using single current sensor’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 938950.
    7. 7)
      • 7. Kumar, R., Singh, B.: ‘Solar PV powered BLDC motor drive for water pumping using Cuk converter’, IET Electr. Power Appl., 2017, 11, (2), pp. 222232.
    8. 8)
      • 8. Stokes, K., Bigger, J.: ‘Reliability, cost, and performance of PV-powered water pumping systems: a survey for electric utilities’, IEEE Trans. Energy Convers., 1993, 8, (3), pp. 506512.
    9. 9)
      • 9. Singh, B., Kumar, R.: ‘Simple brushless DC motor drive for solar photovoltaic array fed water pumping system’, IET Power Electron., 2016, 9, (7), pp. 14871495.
    10. 10)
      • 10. Jain, S., Thopukara, A.K., Karampuri, R., et al: ‘A single-stage photovoltaic system for a dual-inverter-fed open-end winding induction motor drive for pumping applications’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 48094818.
    11. 11)
      • 11. Vitorino, M.A., de Rossiter Correa, M.B., Jacobina, C.B., et al: ‘An effective induction motor control for photovoltaic pumping’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 11621170.
    12. 12)
      • 12. Singh, S., Singh, B.: ‘Solar PV water pumping system with DC link voltage regulation’, Int. J. Power Electron., 2015, 7, (1/2), pp. 7285.
    13. 13)
      • 13. Yahyaoui, I., Nafaa, J., Charfi, S., et al: ‘MPPT techniques for a photovoltaic pumping system’. 6th Int. Renewable Energy Congress (IREC), 2015, pp. 16.
    14. 14)
      • 14. Zhang, S., Xu, Z., Li, Y., et al: ‘Optimization of MPPT step size in stand-alone solar pumping systems’. IEEE Power Energy Society General Meeting, June 2006, pp. 16.
    15. 15)
      • 15. Piegari, L., Rizzo, R.: ‘Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking’, IET Renew. Power Gen., 2010, 4, (4), pp. 317328.
    16. 16)
      • 16. Attaianese, C., Perfetto, A., Tomasso, G.: ‘A space vector modulation algorithm for torque control of inverter fed induction motor drive’, IEEE Power Eng. Rev., 2002, 22, (5), pp. 6565.
    17. 17)
      • 17. Youm, J.H., Kwon, B.H.: ‘An effective software implementation of the space-vector modulation’, IEEE Trans. Ind. Electron., 1999, 46, (4), pp. 866868.
    18. 18)
      • 18. Wu, B.: ‘High power converters and AC drives’ (Wiley, New Jersey, 2006).
    19. 19)
      • 19. Feng, D., Wu, B., Liu, C., et al: ‘Space vector modulation for high-power three-level NPC rectifiers without even order harmonics’. IEEE Power Electronics, Specialists Conf., 2005, pp. 19861991.
    20. 20)
      • 20. Findlay, R.D., Stranges, N., MacKay, D.K.: ‘Losses due to rotational flux in three phase induction motors’, IEEE Trans. Energy Convers., 1994, 9, (3), pp. 543549.
    21. 21)
      • 21. Dominguez, J.R., Mora-Soto, C., Ortega-Cisneros, S., et al: ‘Copper and core loss minimization for induction motors using high-order sliding-mode control’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 28772889.
    22. 22)
      • 22. Uddin, M.N., Nam, S.W.: ‘New online loss-minimization-based control of an induction motor drive’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 926933.
    23. 23)
      • 23. Sridharan, S., Krein, P.T.: ‘Minimization of system-level losses in VSI-based induction motor drives: offline strategies’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 10961105.
    24. 24)
      • 24. Rajendran, S., Srinivasan, H.: ‘Simplified accelerated particle swarm optimisation algorithm for efficient maximum power point tracking in partially shaded photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (9), pp. 13401347.
    25. 25)
      • 25. Saha, S.K., Kar, R., Mandai, T.I., et al: ‘Optimal linear phase fir high pass filter design using PSOCFIWA-WM’. Information and Communication Technologies (WICT), World Congress, 2012, pp. 768773.
    26. 26)
      • 26. Metry, M., Shadmand, M.B., Balog, R.S., et al: ‘MPPT of photovoltaic systems using sensorless current-based model predictive control’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 11571167.
    27. 27)
      • 27. Orlowska-Kowalska, T., Dybkowski, M.: ‘Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 12961308.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0452
Loading

Related content

content/journals/10.1049/iet-pel.2017.0452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address