http://iet.metastore.ingenta.com
1887

High step-up cascade synchronous boost DC–DC converter with zero-voltage switching

High step-up cascade synchronous boost DC–DC converter with zero-voltage switching

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A high step-up cascade synchronous boost DC–DC converter with zero-voltage switching (ZVS) is proposed. The proposed converter is based on the conventional cascade boost converter with a single switch. In the first stage, a boost cell is modified to improve the voltage gain by utilising a coupled inductor. Additionally, turn ratio can be used to adjust voltage gain. In the second stage, a synchronous rectifier is adopted instead of the output diode to improve power efficiency. Moreover, ZVS is achieved using an auxiliary circuit, which consists of a coupled inductor and a small inductor. Therefore, total power efficiency is improved and high voltage gain can be obtained from a low turn ratio. The theoretical analysis and performance are proven from the experiment results using a prototype of the proposed converter with an output of 200 V–200 W.

References

    1. 1)
      • W. Li , X. He .
        1. Li, W., He, X.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391249.
        . IEEE Trans. Ind. Electron. , 4 , 1239 - 1249
    2. 2)
      • X. Zhang , C. Yao , C. Li .
        2. Zhang, X., Yao, C., Li, C., et al: ‘A wide bandgap device-based isolated quasi-switched-capacitor DC/DC converter’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 25002510.
        . IEEE Trans. Power Electron. , 5 , 2500 - 2510
    3. 3)
      • B. Gu , J. Dominic , B. Chen .
        3. Gu, B., Dominic, J., Chen, B., et al: ‘Hybrid transformer ZVS/ZCS DC–DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 21272136.
        . IEEE Trans. Power Electron. , 4 , 2127 - 2136
    4. 4)
      • T.-F. Wu , Y.-S. Lai , J.-C. Hung .
        4. Wu, T.-F., Lai, Y.-S., Hung, J.-C., et al: ‘Boost converter with coupled inductors and buck–boost type of active clamp’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 154162.
        . IEEE Trans. Ind. Electron. , 1 , 154 - 162
    5. 5)
      • X. Hu , C. Gong .
        5. Hu, X., Gong, C.: ‘A high voltage gain DC–DC converter integrating coupled-inductor and diode–capacitor techniques’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 789800.
        . IEEE Trans. Power Electron. , 2 , 789 - 800
    6. 6)
      • R.-J. Wai , L.-W. Liu , R.-Y. Duan .
        6. Wai, R.-J., Liu, L.-W., Duan, R.-Y.: ‘High-efficiency voltage-clamped DC–DC converter with reduced reverse-recovery current and switch-voltage stress’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 272280.
        . IEEE Trans. Ind. Electron. , 1 , 272 - 280
    7. 7)
      • R.-J. Wai , C.-Y. Lin , R.-Y. Duan .
        7. Wai, R.-J., Lin, C.-Y., Duan, R.-Y., et al: ‘High-efficiency DC–DC converter with high voltage gain and reduced switch stress’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 354364.
        . IEEE Trans. Ind. Electron. , 1 , 354 - 364
    8. 8)
      • S.-K. Changchien , T.-J. Liang , J.-F. Chen .
        8. Changchien, S.-K., Liang, T.-J., Chen, J.-F., et al: ‘Step-up DC–DC converter by coupled inductor and voltage-lift technique’, lET Power Electron., 2010, 3, (3), pp. 369378.
        . lET Power Electron. , 3 , 369 - 378
    9. 9)
      • Y. Zhao , W. Li , X. He .
        9. Zhao, Y., Li, W., He, X.: ‘Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell’, IEEE Trans. Power Electron., 2014, 27, (6), pp. 28692878.
        . IEEE Trans. Power Electron. , 6 , 2869 - 2878
    10. 10)
      • Y.-T. Chen , Z.-X. Lu , R.-H. Liang .
        10. Chen, Y.-T., Lu, Z.-X., Liang, R.-H., et al: ‘Analysis and implementation of a novel high step-up DC–DC converter with low switch voltage stress and reduced diode voltage stress’, lET Power Electron., 2016, 9, (9), pp. 20032012.
        . lET Power Electron. , 9 , 2003 - 2012
    11. 11)
      • J. Yang , D. Yu , H. Cheng .
        11. Yang, J., Yu, D., Cheng, H., et al: ‘Dual-coupled inductors-based high step-up DC/DC converter without input electrolytic capacitor for PV application’, lET Power Electron., 2017, 10, (6), pp. 646656.
        . lET Power Electron. , 6 , 646 - 656
    12. 12)
      • Y.P. Siwakoti , F. Blaabjerg .
        12. Siwakoti, Y.P., Blaabjerg, F.: ‘Single switch nonisolated ultra-step-up DC–DC converter with an integrated coupled inductor for high boost applications’, lET Power Electron., 2017, 32, (11), pp. 85448558.
        . lET Power Electron. , 11 , 8544 - 8558
    13. 13)
      • L. Huber , M.M. Jovanovic .
        13. Huber, L., Jovanovic, M.M.: ‘A design approach for server power supplies for networking applications’. Proc. IEEE Applied Power Electron. Conf. and Exposition, New Orleans, USA, 2000, pp. 11631169.
        . Proc. IEEE Applied Power Electron. Conf. and Exposition , 1163 - 1169
    14. 14)
      • F.L. Luo , H. Ye .
        14. Luo, F.L., Ye, H.: ‘Positive output cascade boost converters’. IEE Proc. Electr. Power Appl., 2004, 151, (5), pp. 590606.
        . IEE Proc. Electr. Power Appl. , 5 , 590 - 606
    15. 15)
      • M.G. Ortiz-Lopez , J. Leyva-Ramos , E.E. Carbajal-Gutierrez .
        15. Ortiz-Lopez, M.G., Leyva-Ramos, J., Carbajal-Gutierrez, E.E., et al: ‘Modelling and analysis of switch-mode cascade converters with a single active switch’, lET Power Electron., 2008, 1, (4), pp. 478487.
        . lET Power Electron. , 4 , 478 - 487
    16. 16)
      • B.-R. Lin , J.-J. Chen .
        16. Lin, B.-R., Chen, J.-J.: ‘Analysis and implementation of a soft switching converter with high-voltage conversion ratio’, lET Power Electron., 2008, 1, (3), pp. 386394.
        . lET Power Electron. , 3 , 386 - 394
    17. 17)
      • S.-M. Chen , T.-J. Liang , L.-S. Yang .
        17. Chen, S.-M., Liang, T.-J., Yang, L.-S., et al: ‘A cascaded high step-up DC–DC converter with single switch for microsource applications’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11461153.
        . IEEE Trans. Power Electron. , 4 , 1146 - 1153
    18. 18)
      • A. Naderi , K. Abbaszadeh .
        18. Naderi, A., Abbaszadeh, K.: ‘High step-up DC–DC converter with input current ripple cancellation’, lET Power Electron., 2016, 9, (12), pp. 23942403.
        . lET Power Electron. , 12 , 2394 - 2403
    19. 19)
      • H.-L. Do .
        19. Do, H.-L.: ‘A soft-switching DC/DC converter with high voltage gain’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 11931200.
        . IEEE Trans. Power Electron. , 5 , 1193 - 1200
    20. 20)
      • K.-B. Park , G.-W. Moon , M.-J. Youn .
        20. Park, K.-B., Moon, G.-W., Youn, M.-J.: ‘Nonisolated high step-up stacked converter based on boost-integrated isolated converter’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 577587.
        . IEEE Trans. Power Electron. , 2 , 577 - 587
    21. 21)
      • Z. Chen , Q. Zhou , J. Xu .
        21. Chen, Z., Zhou, Q., Xu, J.: ‘Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current’, IET Power Electron., 2015, 2, (8), pp. 213220.
        . IET Power Electron. , 8 , 213 - 220
    22. 22)
      • J.W. Baek , M.H. Ryoo , T.J. Kim .
        22. Baek, J.W., Ryoo, M.H., Kim, T.J., et al: ‘High boost converter using voltage multiplier’. Proc. IECON, North Carolina, USA, 2005, pp. 567572.
        . Proc. IECON , 567 - 572
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0432
Loading

Related content

content/journals/10.1049/iet-pel.2017.0432
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address