High step-up cascade synchronous boost DC–DC converter with zero-voltage switching

High step-up cascade synchronous boost DC–DC converter with zero-voltage switching

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A high step-up cascade synchronous boost DC–DC converter with zero-voltage switching (ZVS) is proposed. The proposed converter is based on the conventional cascade boost converter with a single switch. In the first stage, a boost cell is modified to improve the voltage gain by utilising a coupled inductor. Additionally, turn ratio can be used to adjust voltage gain. In the second stage, a synchronous rectifier is adopted instead of the output diode to improve power efficiency. Moreover, ZVS is achieved using an auxiliary circuit, which consists of a coupled inductor and a small inductor. Therefore, total power efficiency is improved and high voltage gain can be obtained from a low turn ratio. The theoretical analysis and performance are proven from the experiment results using a prototype of the proposed converter with an output of 200 V–200 W.


    1. 1)
      • 1. Li, W., He, X.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391249.
    2. 2)
      • 2. Zhang, X., Yao, C., Li, C., et al: ‘A wide bandgap device-based isolated quasi-switched-capacitor DC/DC converter’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 25002510.
    3. 3)
      • 3. Gu, B., Dominic, J., Chen, B., et al: ‘Hybrid transformer ZVS/ZCS DC–DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 21272136.
    4. 4)
      • 4. Wu, T.-F., Lai, Y.-S., Hung, J.-C., et al: ‘Boost converter with coupled inductors and buck–boost type of active clamp’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 154162.
    5. 5)
      • 5. Hu, X., Gong, C.: ‘A high voltage gain DC–DC converter integrating coupled-inductor and diode–capacitor techniques’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 789800.
    6. 6)
      • 6. Wai, R.-J., Liu, L.-W., Duan, R.-Y.: ‘High-efficiency voltage-clamped DC–DC converter with reduced reverse-recovery current and switch-voltage stress’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 272280.
    7. 7)
      • 7. Wai, R.-J., Lin, C.-Y., Duan, R.-Y., et al: ‘High-efficiency DC–DC converter with high voltage gain and reduced switch stress’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 354364.
    8. 8)
      • 8. Changchien, S.-K., Liang, T.-J., Chen, J.-F., et al: ‘Step-up DC–DC converter by coupled inductor and voltage-lift technique’, lET Power Electron., 2010, 3, (3), pp. 369378.
    9. 9)
      • 9. Zhao, Y., Li, W., He, X.: ‘Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell’, IEEE Trans. Power Electron., 2014, 27, (6), pp. 28692878.
    10. 10)
      • 10. Chen, Y.-T., Lu, Z.-X., Liang, R.-H., et al: ‘Analysis and implementation of a novel high step-up DC–DC converter with low switch voltage stress and reduced diode voltage stress’, lET Power Electron., 2016, 9, (9), pp. 20032012.
    11. 11)
      • 11. Yang, J., Yu, D., Cheng, H., et al: ‘Dual-coupled inductors-based high step-up DC/DC converter without input electrolytic capacitor for PV application’, lET Power Electron., 2017, 10, (6), pp. 646656.
    12. 12)
      • 12. Siwakoti, Y.P., Blaabjerg, F.: ‘Single switch nonisolated ultra-step-up DC–DC converter with an integrated coupled inductor for high boost applications’, lET Power Electron., 2017, 32, (11), pp. 85448558.
    13. 13)
      • 13. Huber, L., Jovanovic, M.M.: ‘A design approach for server power supplies for networking applications’. Proc. IEEE Applied Power Electron. Conf. and Exposition, New Orleans, USA, 2000, pp. 11631169.
    14. 14)
      • 14. Luo, F.L., Ye, H.: ‘Positive output cascade boost converters’. IEE Proc. Electr. Power Appl., 2004, 151, (5), pp. 590606.
    15. 15)
      • 15. Ortiz-Lopez, M.G., Leyva-Ramos, J., Carbajal-Gutierrez, E.E., et al: ‘Modelling and analysis of switch-mode cascade converters with a single active switch’, lET Power Electron., 2008, 1, (4), pp. 478487.
    16. 16)
      • 16. Lin, B.-R., Chen, J.-J.: ‘Analysis and implementation of a soft switching converter with high-voltage conversion ratio’, lET Power Electron., 2008, 1, (3), pp. 386394.
    17. 17)
      • 17. Chen, S.-M., Liang, T.-J., Yang, L.-S., et al: ‘A cascaded high step-up DC–DC converter with single switch for microsource applications’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11461153.
    18. 18)
      • 18. Naderi, A., Abbaszadeh, K.: ‘High step-up DC–DC converter with input current ripple cancellation’, lET Power Electron., 2016, 9, (12), pp. 23942403.
    19. 19)
      • 19. Do, H.-L.: ‘A soft-switching DC/DC converter with high voltage gain’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 11931200.
    20. 20)
      • 20. Park, K.-B., Moon, G.-W., Youn, M.-J.: ‘Nonisolated high step-up stacked converter based on boost-integrated isolated converter’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 577587.
    21. 21)
      • 21. Chen, Z., Zhou, Q., Xu, J.: ‘Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current’, IET Power Electron., 2015, 2, (8), pp. 213220.
    22. 22)
      • 22. Baek, J.W., Ryoo, M.H., Kim, T.J., et al: ‘High boost converter using voltage multiplier’. Proc. IECON, North Carolina, USA, 2005, pp. 567572.

Related content

This is a required field
Please enter a valid email address