access icon free Study on high robustness and fast dynamic response synchronous rectifier buck converter

Here, a novel control strategy combined by constant-frequency V 2 control and H robust control is proposed and tested in a buck converter. The control strategy not only demonstrates the fast transient response of ordinary V 2 control, but also shows strong robustness with different input conditions. The main drawbacks of V 2 control, such as high interference susceptibility and low input perturbation stability margin, can be improved by introducing H robust strategy into the controller design. During the analysis and design process, the original controlled system based on the V 2 control is modelled at first, then the H weighting functions are calculated according to the small-signal analysis of V 2 controlled buck converter. After that, the H robust compensator parameters based on constant-frequency V 2 control are calculated. Finally, a buck converter controlled by the proposed control strategy is built and tested, with 48 V input voltage, 12 V output voltage, and 120 W output power. The experimental results demonstrate the effectiveness of the converter with the proposed control, which also proves the proposed method has great potential for high robustness and fast dynamic response applications.

Inspec keywords: H∞ control; compensation; robust control; transient response; rectifying circuits; control system synthesis; frequency control; power convertors

Other keywords: H∞ robust compensator parameters; voltage 48 V; high robustness fast dynamic response synchronous rectifier buck converter; constant-frequency V2 control; power 120 W; controller design; V2 controlled buck converter; small-signal analysis; fast transient response; voltage 12 V; control strategy; H∞ weighting functions; H∞ robust control

Subjects: Power electronics, supply and supervisory circuits; Frequency control; Optimal control; Stability in control theory; Control system analysis and synthesis methods; Control of electric power systems

References

    1. 1)
      • 24. Huang, W.: ‘A new control for multi-phase buck converter with fast transient response’. Proc. IEEE Applied Power Electronics Conf. and Exposition, 2001, pp. 273279.
    2. 2)
      • 11. Lee, Y., Wang, S., Chen, K.: ‘Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 829838.
    3. 3)
      • 5. Tian, S., Lee, F.C., Li, Q., et al: ‘Unified equivalent circuit model and optimal design of V2 controlled Buck converters’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 17341744.
    4. 4)
      • 13. Zhou, G., Xu, J., Sha, J., et al: ‘Valley V2 control technique for switching converters with fast transient response’. Proc. IEEE Int. Conf. Power Electronics, Energy Conversion Congress Exposition, 2011, pp. 27882791.
    5. 5)
      • 7. Liu, P., Yan, Y., Lee, F.C., et al: ‘Auto-tuning and self-calibration techniques for V2 control with capacitor current ramp compensation using lossless capacitor current sensing’. Proc. IEEE Energy Conversion Congress Exposition, 2014, pp. 117124.
    6. 6)
      • 25. Cheng, K.Y., Yu, F., Lee, F.C., et al: ‘Digital enhanced V2-type constant on-time control using inductor current ramp estimation for a buck converter with low-ESR capacitors’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 12411252.
    7. 7)
      • 17. Goder, D., Pelletier, W.R.: ‘V2 architecture provides ultra-fast transient response in switch mode power supplies’. Proc. High Frequency Power Conversion Conf., 1996, pp. 1923.
    8. 8)
      • 12. Zhou, G., Xu, J., Wang, J.: ‘Constant-frequency peak-ripple-based control of buck converter in CCM: review, unification, and duality’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12801291.
    9. 9)
      • 14. Lin, Y., Chen, C., Chen, D., et al: ‘A ripple-based constant on-time control with virtual inductor current and offset cancellation for DC power converters’, IEEE Trans. Power Electron., 2012, 27, (10), pp. 43014310.
    10. 10)
      • 26. Wang, F., Xu, J., Xu, J.: ‘Small-signal model of V2 control technique with compensation’. Proc. IEEE Int. Conf. Communications Circuits Systems, 2004, pp. 13581362.
    11. 11)
      • 16. Goder, D.: ‘Switching regulators’. US Patent 5 770 940, 1998.
    12. 12)
      • 4. Tang, W., Lee, F., Ridley, R.: ‘Small-signal modeling of average current mode control’, IEEE Trans. Power Electron., 1993, 8, (2), pp. 112119.
    13. 13)
      • 9. Yu, F., Lee, F.C.: ‘Design oriented model for constant on-time V2 control’. Proc. IEEE Energy Conversion Congress Exposition, 2010, pp. 31153122.
    14. 14)
      • 19. Cortes, J., Svikovic, V., Alou, P., et al: ‘Comparison of the behavior of voltage mode, V2 and V2IC control of a buck converter for a very fast and robust dynamic response’. Proc. IEEE 29th Annual Applied Power Electronics Conf. Exposition, March 2014, pp. 28882894.
    15. 15)
      • 31. Vinicius, F.M., Pedro, L.D.P.: ‘H control with pole location for a DCDC converter with a switched load’. IEEE Int. Symp. Ind. Electronics, Brazil, 2003, pp. 550555.
    16. 16)
      • 20. Liu, P.-H., Yan, Y., Lee, F., et al: ‘External ramp auto tuning for current mode control of switching converters’. Proc. IEEE 28th Annual Applied Power Electronics Conf. Exposition, March 2013, pp. 276280.
    17. 17)
      • 2. Liu, Y.F., Meyer, E., Liu, X.D.: ‘Recent developments in digital control strategies for DC/DC switching power converters’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 25672577.
    18. 18)
      • 29. Chen, B.S., Cheng, Y.M., Lee, C.H.: ‘A genetic approach to mixed H2/H optimal PID control’, IEEE Trans. Control Syst., 1995, 15, (5), pp. 5160.
    19. 19)
      • 1. Redl, R., Sun, J.: ‘Ripple-based control of switching regulators – an overview’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 26692680.
    20. 20)
      • 6. Tian, S., Lee, F.C., Mattavelli, P., et al: ‘Small-signal analysis and optimal design of constant frequency V2 control’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 17241733.
    21. 21)
      • 10. Mai, Y., Mok, P.: ‘A constant frequency output-ripple-voltage-based buck converter without using large ESR capacitor’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2008, 55, (8), pp. 748752.
    22. 22)
      • 33. Rigatos, G., Siano, P., Cecati, C.: ‘An H-infinity feedback control approach for three-phase voltage source converters’. IEEE IECON 40th Annual Conf., October 2014, pp. 12271232.
    23. 23)
      • 36. Figueres, E., Garcera, G., Pascual, M., et al: ‘H control of multi-module parallel DC-DC converters’. Proc. IEEE Int. Symp. on Industrial Electronics, 2002, pp. 10531058.
    24. 24)
      • 35. Kugi, A., Schlachter, K.: ‘Nonlinear H-controller design for a dc-to-dc power converter’, IEEE Trans. Control Syst., 1999, 7, (2), pp. 230237.
    25. 25)
      • 34. Naim, R., Weiss, G., Ben-Yaakov, S.: ‘H control applied to boost power converters’, IEEE Trans. Power Electron., 1997, 12, (4), pp. 677683.
    26. 26)
      • 28. Sira Ramirez, H., Prada-Rizzo, M.T.: ‘Nonlinear feedback regulator design for the Cuk converter’, IEEE Trans. Autom. Control, 1992, 37, (8), pp. 11731180.
    27. 27)
      • 21. Cortes, J., Svikovic, V., Alou, P., et al: ‘Improved transient response of controllers by synchronizing the modulator with the load step: application to V2IC’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 15771590.
    28. 28)
      • 22. Tian, S., Lee, F.C., Mattavelli, P., et al: ‘Small-signal analysis and optimal design of external ramp for constant on-time V2 control with multilayer ceramic caps’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 44504460.
    29. 29)
      • 27. Sira Ramirez, H., Lischinsky-Arenas, P.: ‘Differential algebraic approach in nonlinear dynamical compensator design for dc-to-dc power converters’, Int. J. Control, 1991, 54, (1), pp. 111133.
    30. 30)
      • 32. Doyle, J.C., Glover, K., Khargonekar, P.P., et al: ‘State-space solutions to standard H2 and H control problems’, IEEE Trans. Autom. Control, 1989, 34, (8), pp. 831846.
    31. 31)
      • 18. Del Viejo, M., Alou, P., Oliver, J., et al: ‘V2IC control: a novel control technique with very fast response under load and voltage steps’. Proc. IEEE 26th Annual Applied Power Electronics Conf. Exposition, 2011, pp. 231237.
    32. 32)
      • 23. Qu, S.: ‘Modeling and design considerations of V2 controlled buck regulator’. Proc. IEEE Applied Power Electronics Conf. and Exposition, 2001, pp. 507513.
    33. 33)
      • 8. Li, J., Lee, F.C.: ‘Modeling of V2 current-mode control’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2009, 57, (9), pp. 25522563.
    34. 34)
      • 15. Chen, W., Wang, C., Su, Y., et al: ‘Reduction of equivalent series inductor effect in delay-ripple reshaped constant ontime control for buck converter with multilayer ceramic capacitors’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 23662376.
    35. 35)
      • 3. Huerta, S., Soto, A., Alou, P., et al: ‘Advanced control for very fast dc–dc converters based on hysteresis of the Cout current’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (4), pp. 10521061.
    36. 36)
      • 30. Garcera, G., Pascual, M., Figueres, E.: ‘Robust average current-mode control of multimodule parallel DC–DC PWM converter systems with improved dynamic response’, IEEE Trans. Ind. Electron., 2001, 48, (5), pp. 9951005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0414
Loading

Related content

content/journals/10.1049/iet-pel.2017.0414
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading