Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reduction of leakage inductance and AC resistance of planar transformers by optimising the current distribution

Planar transformers (PTs) are becoming increasingly popular in high-power density, high-frequency SMPS in recent years due to their unique advantages including low profile structures and excellent thermal properties. This study focuses on detailed investigation of the effects of coil current distribution within each winding layer on leakage inductance and AC resistance of a PT, and an analytical derivation based on variational method is given. Then the optimal current distribution is proposed and verified through 3D finite element analysis simulation and physical experiments. The results show that the leakage inductance and AC resistance can be reduced further by optimising the current distribution. Accordingly, a practical implementation method is proposed to control the current distribution within a winding layer by adjusting the widths of conductors.

References

    1. 1)
      • 4. Du, S.B.Y., Wang, G., Bhattacharya, S.: ‘Design considerations of high voltage and high frequency transformer for solid state transformer application’. 36th Annual Conf. IEEE Industrial Electronics Society, Glendale, USA, December 2010, pp. 421426.
    2. 2)
      • 7. Li, J., Hu, C., Pang, X.: ‘Analysis of the leakage inductance of planar transformer’. Int. Conf. Electronic Measurement & Instruments, Beijing, China, October 2009, pp. 273276.
    3. 3)
      • 11. Wang, Y., Guan, Y., Xu, D., et al: ‘A CLCL resonant DC/DC converter for two-stage LED driver system’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 28832891.
    4. 4)
      • 20. Hsu, H.-M.: ‘Analytical formula for inductance of metal of various widths in spiral inductors’, IEEE Trans. Electron Devices, 2004, 51, (8), pp. 13431346.
    5. 5)
      • 12. Ouyang, Z., Thomsen, O.C., Andersen, M.A.E.: ‘The analysis and comparison of leakage inductance in different winding arrangements for planar transformer’. Int. Conf. Power Electronics and Drive Systems, Taipei, Taiwan, January 2009, pp. 11431148.
    6. 6)
      • 8. Wang, Y., De Haan, S.W.H., Ferreira, J.A.: ‘Design of low-profile nanocrystalline transformer in high-current phase-shifted DC-DC converter’. IEEE Energy Conversion Congress and Exposition, Atlanta, USA, November 2010, pp. 21772181.
    7. 7)
      • 1. Amari, M., Ghouili, J., Bacha, F.: ‘New high-frequency unidirectional DC-DC converter for fuel-cell electrical vehicles’. 24th Canadian Conf. Electrical and Computer Engineering, Niagara Falls, Canada, September 2011, pp. 001451001458.
    8. 8)
      • 3. Magambo, J.S.N.T., Bakri, R., Margueron, X., et al: ‘Planar magnetic components in more electric aircraft: review of technology and key parameters for DC-DC power electronic converter’, IEEE Trans. Transp. Electrif., 2017, doi: 10.1109/TTE.2017.2686327.
    9. 9)
      • 14. Ouyang, Z., Zhang, J., Hurley, W.G.: ‘Calculation of leakage inductance for high-frequency transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 57695775.
    10. 10)
      • 6. Han, Y., Eberle, W., Liu, Y.F.: ‘A practical copper loss measurement method for the planar transformer in high-frequency switching converters’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22762287.
    11. 11)
      • 13. Lambert, M., Sirois, F., Martinez-Duro, M., et al: ‘Analytical calculation of leakage inductance for low-frequency transformer modeling’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 507515.
    12. 12)
      • 18. Huang, X., Ngo, K.D.T.: ‘Design technique for a spiral planar winding with geometric radii’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (2), pp. 825830.
    13. 13)
      • 10. Biela, J., Kolar, J.W.: ‘Using transformer parasitics for resonant converters – a review of the calculation of the stray capacitance of transformers’, IEEE Trans. Ind. Appl., 2008, 3, (1), pp. 223233.
    14. 14)
      • 5. Pahlevaninezhad, M., Das, P., Drobnik, J., et al: ‘A novel winding layout strategy for planar transformer applicable to high frequency high power DC-DC converters’. IEEE Energy Conversion Congress and Exposition, Phoenix, USA, November 2011, pp. 37863791.
    15. 15)
      • 16. Nan, X., Sullivan, C.R.: ‘An improved calculation of proximity-effect loss in high-frequency windings of round conductors’. 34th Power Electronics Specialist Conf., Acapulco, Mexico, June 2003, pp. 853860.
    16. 16)
      • 21. Chen, M., Araghchini, M., Afridi, K.K., et al: ‘A systematic approach to modeling impedances and current distribution in planar magnetics’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 560580.
    17. 17)
      • 15. Ma, Y., Meng, P., Zhang, J., et al: ‘Detailed losses analysis of high-frequency planar power transformer’. 7th Int. Conf. Power Electronics and Drive Systems, Bangkok, Thailand, April 2007, pp. 423426.
    18. 18)
      • 17. Aime, J., Cogitore, B., Meunier, G., et al: ‘Numerical methods for eddy currents modeling of planar transformers’, IEEE Trans. Magn., 2011, 47, (5), pp. 10141017.
    19. 19)
      • 19. Cove, S.R., Ordonez, M.: ‘Wireless-power-transfer planar spiral winding design applying track width ratio’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 24232433.
    20. 20)
      • 9. Dewan, S.B., Lavers, J.D., Kojori, H.A.: ‘The effect of the circuit leakage inductances on the steady state performance of an inductor-transformer resonant DC-DC converter’, IEEE Trans. Magn., 1987, 23, (5), pp. 27852787.
    21. 21)
      • 2. Filchev, T., Cook, D., Wheeler, P., et al: ‘Investigation of high voltage, high frequency transformers/voltage multipliers for industrial applications’. 4th IET Conf. Power Electronics, Machines and Drives, York, UK, May 2008, pp. 209213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0362
Loading

Related content

content/journals/10.1049/iet-pel.2017.0362
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address