access icon free Power electronic interface with de-coupled control for wind-driven PMSG feeding utility grid and DC load

A wind energy conversion system employing dq control has been proposed for extracting maximum power from a wind-driven permanent magnet synchronous generator (PMSG) and feeding it to a three-phase utility grid. The controller consists of a diode bridge rectifier, a dc–dc boost converter and a voltage source inverter (VSI). The grid synchronisation is achieved by controlling the VSI at the grid side. Besides supplying power to the ac grid, the proposed scheme also feeds a local dc load, as the dc link voltage is maintained constant. To evaluate the performance of proposed scheme, MATLAB/Simulink based model is tested under varying wind speeds. A proportional–integral controller is used for varying the duty ratio of the dc–dc converter to maintain the output dc voltage constant. The decoupled control algorithm for independent control of real and reactive power fed to the grid is implemented using dSPACE DS1103 controller. A steady-state analysis has been developed for predicting the value of duty cycle as well as the reference current for maximum power point tracking at a given wind velocity or rotor speed of PMSG. Experiments have been carried out on a 48 V, 750 W, 500 rpm PMSG and the test results are furnished to validate the developed scheme.

Inspec keywords: machine control; synchronous generators; permanent magnet generators; synchronisation; wind power plants; invertors; PI control; rectifiers; power grids; DC-DC power convertors; load regulation; voltage-source convertors

Other keywords: diode bridge rectifier; voltage 48 V; wind-driven permanent magnet synchronous generator; DC load; dq control; three-phase utility grid; steady-state analysis; proportional-integral controller; wind-driven PMSG feeding utility grid; DC-DC boost converter; Matlab-Simulink model; de-coupled control; dSPACE DS1103 controller; maximum power point tracking; grid synchronisation; power 750 W; VSI; voltage source inverter; wind energy conversion system; reactive power control

Subjects: Synchronous machines; Wind power plants; DC-DC power convertors; Power system control; AC-DC power convertors (rectifiers); Control of electric power systems; DC-AC power convertors (invertors)

References

    1. 1)
      • 10. Naidu, N.K.S., Singh, B.: ‘Grid-interfaced DFIG-based variable speed wind energy conversion system with power smoothening’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 5158.
    2. 2)
      • 15. Li, S., Haskew, T.A., Swatloski, R.P., et al: ‘Optimal and direct-current vector control of direct-driven PMSG wind turbines’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23252337.
    3. 3)
      • 19. Lumbreras, C., Guerrero, J.M., García, P., et al: ‘Control of a small wind turbine in the high wind speed region’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69806991.
    4. 4)
      • 4. Mesemanolis, A., Mademlis, C., Kioskeridis, I.: ‘Optimal efficiency control strategy in wind energy conversion system with induction generator’, IEEE J. Emerg. Sel. Top. Power Electron., 2013, 1, (4), pp. 238246.
    5. 5)
      • 5. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138.
    6. 6)
      • 2. Kumar, S. S., Kumaresan, N., Subbiah, M., et al: ‘Modelling, analysis and control of stand-alone self-excited induction generator-pulse width modulation rectifier systems feeding constant DC voltage applications’, IET. Gener. Transm. Distrib., 2014, 8, (6), pp. 11401155.
    7. 7)
      • 8. Fateh, F., White, W.N., Gruenbacher, D.: ‘A maximum power tracking technique for grid-connected DFIG-based wind turbines’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (4), pp. 957966.
    8. 8)
      • 13. Chinchilla, M., Arnaltes, S., Burgos, J.C.: ‘Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 130135.
    9. 9)
      • 1. Hazra, S., Sensarma, P.: ‘Vector approach for self-excitation and control of induction machine in stand-alone wind power generation’, IET Renew. Power Gener., 2011, 5, (5), pp. 397405.
    10. 10)
      • 16. Sayyed, A.A.S., Mahdi, R., Maryam, D., et al: ‘Dynamic state estimation of a permanent magnet synchronous generator-based wind turbine’, IET Renew. Power Gener., 2016, 10, (9), pp. 12781286.
    11. 11)
      • 17. Abdullah, S.B., Ali, M., Marcelo, G.S., et al: ‘Power quality enhancement for a grid connected wind turbine energy system’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 24952505.
    12. 12)
      • 12. Wai, R.J., Lin, C.Y., Chang, Y.R.: ‘Novel maximum-power-extraction algorithm for PMSG wind generation system’, IET Electr. Power Appl., 2007, 1, (2), pp. 275283.
    13. 13)
      • 11. Chan, T.F., Wang, W., Lai, L.L.: ‘Analysis and performance of a permanent-magnet synchronous generator supplying an isolated load’, IET Electr. Power Appl., 2010, 4, (3), pp. 169176.
    14. 14)
      • 9. Hu, J., Huang, Y., Wang, D., et al: ‘Modeling of grid-connected DFIG-based wind turbines for DC-link voltage stability analysis’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 13251336.
    15. 15)
      • 7. Vijayakumar, K., Kumaresan, N., Ammasai Gounden, N.: ‘Operation and closed-loop control of wind-driven stand-alone doubly fed induction generators using a single inverter-battery system’, IET Electr. Power Appl., 2012, 6, (3), pp. 162171.
    16. 16)
      • 14. Singh, M., Khadkikar, V., Chandra, A.: ‘Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system’, IET Power Electron., 2011, 4, (1), pp. 122130.
    17. 17)
      • 20. Amirnaser, Y., Reza, I.: ‘Voltage-sourced converters in power systems: modeling, control and applications’ (Wiley Publications, IEEE Press, USA, 2010).
    18. 18)
      • 3. Agarwal, V., Aggarwal, R.K., Patidar, P., et al: ‘A novel scheme for rapid tracking of maximum power point in wind energy generation systems’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 228236.
    19. 19)
      • 6. Vijayakumar, K., Kumaresan, N., Ammasai Gounden, N.: ‘Speed sensor-less maximum power point tracking and constant output power operation of wind-driven wound rotor induction generators’, IET Power Electron., 2015, 8, (1), pp. 3346.
    20. 20)
      • 18. Pandurangan, S., Govindarajan, U., Muniyandi, S.K.: ‘Effective power transfer scheme for a grid connected hybrid wind/photovoltaic system’, IET Renew. Power Gener., 2017, 11, (7), pp. 10051017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0347
Loading

Related content

content/journals/10.1049/iet-pel.2017.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading