Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Asymptotically stable controller for SSTs based on Lyapunov direct stability method

An asymptotically stable controller for solid-state transformers (SSTs) based on Lyapunov direct stability (LDS) method is presented in this study. The proposed controller has four control objectives for the SST application, which includes unity power factor at medium-voltage AC (VAC) side of the SST, constant DC-link voltage and constant output voltage magnitude and frequency at low-VAC side of the SST. To fulfil the above-mentioned objectives four control laws are derived from the Lyapunov function, directly. The proposed LDS-based controller is simulated using MATLAB/Simulink software. The obtained results indicate the fast and superior dynamic characteristics of the proposed controller. The LDS-based controller is comprehensive and can be adopted for the SST applications.

References

    1. 1)
      • 27. Wu, J., Chen, W., Yang, F., et al: ‘Global adaptive neural control for strict-feedback time-delay systems with predefined output accuracy’, Inf. Sci., 2015, 301, pp. 2743.
    2. 2)
      • 18. Huber, J.E., Kolar, J. W.: ‘Volume/weight/cost comparison of a 1 MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 45454552.
    3. 3)
      • 21. Liu, B.-L., Zha, Y.-B., Zhang, T.: ‘Sliding mode control of solid state transformer using a three-level hysteresis function’, J. Cent.-South Univ., 2016, 23, pp. 20632074.
    4. 4)
      • 10. Huang, A.Q.: ‘Medium-voltage solid-state transformer: technology for a smarter and resilient grid’, IEEE Ind. Electron. Mag., 2016, 10, pp. 2942.
    5. 5)
      • 20. Hooshmand, R.-A., Ataei, M., Rezaei, M.H.: ‘Improving the dynamic performance of distribution electronic power transformers using sliding mode control’, J. Power Electron., 2012, 12, pp. 145156.
    6. 6)
      • 30. Zhao, X., Yin, Y., Niu, B., et al: ‘Stabilization for a class of switched nonlinear systems with novel average dwell time switching by T–S fuzzy modeling’, IEEE Trans. Cybern., 2016, 46, pp. 19521957.
    7. 7)
      • 23. Açikgöz, H., Keçecioğlu, Ö.F., Yildiz, C., et al: ‘Performance analysis of electronic power transformer based on neuro-fuzzy controller’, SpringerPlus, 2016, 5, p. 1350.
    8. 8)
      • 24. Liu, Y., Liu, Y., Ge, B., et al: ‘Interactive grid interfacing system by matrix-converter based solid state transformer with model predictive control’, IEEE Trans. Ind. Inf., 2017, PP, (99), p. 1.
    9. 9)
      • 6. Madhusoodhanan, S., Tripathi, A., Patel, D., Hazra S, et al: ‘Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters’, IEEE Trans. Ind. Appl., 2015, 51, pp. 33433360.
    10. 10)
      • 32. Wu, J., Su, B., Li, J., et al: ‘Adaptive fuzzy control for full states constrained systems with nonstrict-feedback form and unknown nonlinear dead zone’, Inf. Sci., 2017, 376, pp. 233247.
    11. 11)
      • 9. Guillod, T., Krismer, F., Kolar, J.: ‘Protection of MV converters in the grid: the case of MV/LV solid-state transformers’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 5, (1), p. 1.
    12. 12)
      • 4. She, X., Huang, A.Q., Burgos, R.: ‘Review of solid-state transformer technologies and their application in power distribution systems’, IEEE J. Emerging Sel. Top. Power Electron., 2013, 1, pp. 186198.
    13. 13)
      • 5. Yousefpoor, N., Parkhideh, B., Azidehak, A., et al: ‘Modular transformer converter-based convertible static transmission controller for transmission grid management’, IEEE Trans. Power Electron., 2014, 29, pp. 62936306.
    14. 14)
      • 16. Hunziker, C., Schulz, N.: ‘Potential of solid-state transformers for grid optimization in existing low-voltage grid environments’, Electr. Power Syst. Res., 2017, 146, pp. 124131.
    15. 15)
      • 31. Wu, J., Li, J., Zong, G., et al: ‘Global finite-time adaptive stabilization of nonlinearly parametrized systems with multiple unknown control directions’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, pp. 14051414.
    16. 16)
      • 17. Rodriguez, L.A.G., Jones, V., Oliva, A., et al: ‘A new SST topology comprising boost three-level AC/DC converters for applications in electric power distribution systems’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (2), p. 1.
    17. 17)
      • 2. Bifaretti, S., Zanchetta, P., Watson, A., et al: ‘Advanced power electronic conversion and control system for universal and flexible power management’, IEEE Trans. Smart Grid, 2011, 2, pp. 231243.
    18. 18)
      • 22. Açıkgöz, H., Keçecioğlu, Ö.F., Gani, A., et al: ‘Optimal control and analysis of three phase electronic power transformers’, Procedia, Social Behav. Sci., 2015, 195, pp. 24122420.
    19. 19)
      • 34. Komurcugil, H., Kukrer, O.: ‘A new control strategy for single-phase shunt active power filters using a Lyapunov function’, IEEE Trans. Ind. Electron., 2006, 53, pp. 305312.
    20. 20)
      • 25. Lyapunov, A.M.: ‘The general problem of motion stability’, Ann. Math. Stud., 1892, 17, pp. 531534.
    21. 21)
      • 1. Ronan, E.R., Sudhoff, S.D., Glover, S.F., et al: ‘A power electronic-based distribution transformer’, IEEE Trans. Power Deliv., 2002, 17, pp. 537543.
    22. 22)
      • 26. Wu, J., Chen, W., Li, J.: ‘Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy’, Fuzzy Sets Syst., 2015, 273, pp. 125.
    23. 23)
      • 15. Guerra, G., Martinez-Velasco, J.A.: ‘A solid state transformer model for power flow calculations’, Int. J. Electr. Power Energy Syst., 2017, 89, pp. 4051.
    24. 24)
      • 37. Zhang, K., Shan, Z., Jatskevich, J.: ‘Large- and small-signal average-value modeling of dual-active-bridge DC–DC converter considering power losses’, IEEE Trans. Power Electron., 2017, 32, pp. 19641974.
    25. 25)
      • 19. Wang, D., Mao, C., Lu, J., et al: ‘Theory and application of distribution electronic power transformer’, Electr. Power Syst. Res., 2007, 77, pp. 219226.
    26. 26)
      • 11. Huber, J.E., Kolar, J. W.: ‘Optimum number of cascaded cells for high-power medium-voltage AC–DC converters’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, pp. 213232.
    27. 27)
      • 8. Chen, H., Prasai, A., Moghe, R., et al: ‘A 50 kVA three-phase solid-state transformer based on the minimal topology: Dyna-C’, IEEE Trans. Power Electron., 2016, 31, pp. 81268137.
    28. 28)
      • 38. Beiranvand, H., Rokrok, E.: ‘General relativity search algorithm: a global optimization approach’, Int. J. Comput. Intell. Appl., 2015, 14, p. 1550017.
    29. 29)
      • 13. Kim, D.-H., Han, B.-M., Lee, J.-Y.: ‘Modularized three-phase semiconductor transformer with bidirectional power flow for medium voltage application’, Energies, 2016, 9, p. 668.
    30. 30)
      • 14. Liserre, M., Buticchi, G., Andresen, M., et al: ‘The smart transformer: impact on the electric grid and technology challenges’, IEEE Ind. Electron. Mag., 2016, 10, pp. 4658.
    31. 31)
      • 12. Huber, J.E., Kolar, J.W.: ‘Solid-state transformers: on the origins and evolution of Key concepts’, IEEE Ind. Electron. Mag., 2016, 10, pp. 1928.
    32. 32)
      • 3. Shi, J., Gou, W., Yuan, H., et al: ‘Research on voltage and power balance control for cascaded modular solid-state transformer’, IEEE Trans. Power Electron., 2011, 26, pp. 11541166.
    33. 33)
      • 7. Carne, G.D., Buticchi, G., Liserre, M., et al: ‘Load control using sensitivity identification by means of smart transformer’, IEEE Trans. Smart Grid, 2016, PP, (99), p. 1.
    34. 34)
      • 35. Yu, J., Cheng, M., Gao, D., et al: ‘A Lyapunov stability theory-based control method for three-level shunt active power filter’. 2016 35th Chinese Control Conf. (CCC), 2016, pp. 86838687.
    35. 35)
      • 28. Zhao, X., Shi, P., Zheng, X., et al: ‘Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone’, Automatica, 2015, 60, pp. 193200.
    36. 36)
      • 33. Komurcugil, H., Kukrer, O.: ‘Lyapunov-based control for three-phase PWM AC/DC voltage-source converters’, IEEE Trans. Power Electron., 1998, 13, pp. 801813.
    37. 37)
      • 36. Beiranvand, H., Rokrok, E.: ‘A Lyapunov-based controller for low voltage side inverter of a SST’. Presented at the 31th Power System Conf. (PSC), Tehran, 2016.
    38. 38)
      • 29. Wu, J., Chen, W., Li, J.: ‘Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions’, Automatica, 2016, 69, pp. 298307.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0285
Loading

Related content

content/journals/10.1049/iet-pel.2017.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address