access icon free Distributed capacitance effects on the transmission performance of contactless power transfer for rotary ultrasonic grinding

The contactless rotary transformer has been widely used in rotary ultrasonic machining because of less heat, less vibration, no friction and higher revolving speed. However, the power transfer efficiency of the rotary transformer is rather low. So it is necessary to adopt the method of capacitance compensation to maximum transfer efficiency, and more accurate compensation model will achieve better transmission performance. However, distributed capacitance existing in the primary and secondary winding current compensation models, which will seriously effect accuracy of capacitance compensation. In this study, a new mathematical model of four circuit compensation topologies is proposed, which takes distributed capacitance into consideration. Moreover, a series of experiments are conducted, which focus on the transmission efficiency and output power. The results of experiments have a good consistency with the new model and show higher accuracy compared with the previous models. In addition, the effect of distributed capacitance at different frequencies is also researched.

Inspec keywords: ultrasonic machining; transformer windings; grinding machines; power transformers

Other keywords: secondary winding current compensation; rotary ultrasonic machining; distributed capacitance effects; contactless power transfer; rotary ultrasonic grinding; power transfer efficiency; primary winding current compensation; transmission performance; contactless rotary transformer; capacitance compensation; circuit compensation topology

Subjects: Machining; Sonic and ultrasonic applications; Transformers and reactors

References

    1. 1)
      • 12. Pedder, D.A.G., Brown, A.D., Skinner, J.A.: ‘A contactless electrical energy transmission system’, IEEE Trans. Ind. Electron., 1999, 46, (1), pp. 2330.
    2. 2)
      • 22. Luan, Y., Lin, B., Yang, Q., et al: ‘Effect of temperature and radial force on the transmission performance of contactless power transfer for rotary ultrasonic grinding’, IET Electr. Power Appl., 2017, 11, (7), pp. 11691176.
    3. 3)
      • 18. Zhu, X., Lin, B., Liu, L., et al: ‘Power transfer performance and cutting force effects of contactless energy transfer system for rotary ultrasonic grinding’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 11.
    4. 4)
      • 7. Smeets, J.P.C., Overboom, T.T., Jansen, J.W., et al: ‘Modeling framework for contactless energy transfer systems for linear actuators’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 391399.
    5. 5)
      • 16. Kazmierkowski, M.P., Moradewicz, A.J.: ‘Unplugged but connected: review of contactless energy transfer systems’, IEEE Ind. Electron. Mag., 2012, 6, (4), pp. 4755.
    6. 6)
      • 4. Pei, Z.J., Ferreira, P.M., Kapoor, S.G., et al: ‘Rotary ultrasonic machining for face milling of ceramics’, Int. J. Mach. Tools Manuf., 1995, 35, (7), pp. 10331046.
    7. 7)
      • 8. Trevisan, R., Costanzo, A.: ‘A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 63376345.
    8. 8)
      • 6. Ruviaro, M., Runcos, F., Sadowski, N., et al: ‘Analysis and test results of a brushless doubly fed induction machine with rotary transformer’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 26702677.
    9. 9)
      • 14. Smeets, J.P.C., Overboom, T.T., Jansen, J.W., et al: ‘Modeling framework for contactless energy transfer systems for linear actuators’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 391399.
    10. 10)
      • 19. Yan, J.J., Xin-Bo, R., Hua-Feng, L.I., et al: ‘Soft switching driving circuit for ultrasonic motor’, Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng., 2009, 29, (3), pp. 109114.
    11. 11)
      • 5. Wang, Y., Sarin, V.K., Lin, B., et al: ‘Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites’, Int. J. Mach. Tools Manuf., 2015, 101, pp. 1017.
    12. 12)
      • 1. Ning, F.D., Cong, W.L., Pei, Z.J., et al: ‘Rotary ultrasonic machining of CFRP: a comparison with grinding’, Ultrasonics, 2016, 66, pp. 125132.
    13. 13)
      • 10. Zietsman, N.L., Gule, N.: ‘Optimal design methodology of a three phase rotary transformer for doubly fed induction generator application’. IEEE Int. Electric Machines & Drives Conf., 2015.
    14. 14)
      • 20. Orosz, T., Szakállas, A., Vajda, I.: ‘Calculation of capacitances for lumped parameter circuit model with analytical and finite elementMethod for transformer windings’. 2014 - XIX. FMTÜ Nemzetközi Tudományos Konferencia: Int. Scientific Conf. Cluj-Napoca, Cluj-Napoca Románia, March 20–22 2014, pp. 317320, ErdélyiMúzeum-Egyesület.
    15. 15)
      • 21. Orosz, T., Tamus, Z.A., Vajda, I.: ‘Modeling the high frequency behavior of the Rogowski-coil passive L/r integrator current transducer with analytical and finite element method’. Power Engineering Conf. IEEE, 2014, pp. 14.
    16. 16)
      • 2. Arul, S., Vijayaraghavan, L., Malhotra, S.K., et al: ‘The effect of vibratory drilling on hole quality in polymeric composites’, Int. J. Mach. Tools Manuf., 2006, 46, (3-4), pp. 252259.
    17. 17)
      • 13. Kürschner, D., Rathge, C., Jumar, U.: ‘Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 372381.
    18. 18)
      • 17. Zhu, X., Lin, B., Liu, L.: ‘Efficiency-based compensations and the mechanical load dependencies of rotary transformer for rotary ultrasonic machining applications’, IET Power Electron., 2015, 8, (6), pp. 986993.
    19. 19)
      • 15. Wang, C.S., Covic, G., Stielau, O.H.: ‘Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems’, IEEE Trans. Ind. Electron., 2004, 51, (1), pp. 148157.
    20. 20)
      • 11. Boscaino, V., Pellitteri, F., Rosa, L., et al: ‘Wireless battery chargers for portable applications: design and test of a high-efficiency power receiver’, IET Power Electron., 2013, 6, (1), pp. 2029.
    21. 21)
      • 3. Gong, H., Fang, F.Z., Hu, X.T.: ‘Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials’, Int. J. Mach. Tools Manuf., 2010, 50, (3), pp. 303307.
    22. 22)
      • 9. Zhong, H., Zhao, L., Li, X.: ‘Design and analysis of a three-phase rotary transformer for doubly Fed induction generators’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 11.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0281
Loading

Related content

content/journals/10.1049/iet-pel.2017.0281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading