Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of gate-commutated thyristors for hybrid DC breakers

Hybrid DC breakers (HCBs) are crucial components in modern DC systems. Integrated gate-commutated thyristors (IGCTs) are widely used in high-voltage HCBs due to their controllable turn-off capabilities under high-power conditions. The focus of this study is on the optimisation of gate-commutated thyristors (GCTs) for HCB applications, including operation temperature and design parameters. The considerations of GCT design and operating conditions for the use in HCBs are discussed. Under those considerations, a 2D finite element model of GCT is developed to investigate the influence of the GCT design parameters on the maximum controllable current (MCC) and the safe operation area (SOA). Impedance unevenly distributed along the full wafer has been calculated to obtain accurate simulation results. Results show that the P+-base, lifetime, and the distance between cathode and gate metallisation can all affect the MCC. In addition, GCTs can provide a higher MCC by operating at a higher temperature.

References

    1. 1)
      • 4. Vemulapati, U., Arnold, M., Rahimo, M., et al: ‘Reverse blocking IGCT optimised for 1 kV DC bi-directional solid state circuit breaker’, IET Power Electron., 2015, 8, (12), pp. 23082314.
    2. 2)
      • 19. Lophitis, N., Antoniou, M., Udrea, F., et al: ‘Optimization of parameters influencing the maximum controllable current in gate commutated thyristors’, IET Circuits Devices Syst., 2014, 8, (3), pp. 221226.
    3. 3)
      • 11. Wikstrom, T., Stiasny, T., Rahimo, M., et al: ‘The corrugated P-base IGCT-a new benchmark for large area SQA scaling’. Proc. Int. Conf. 19th Int. Symp. on Power Semiconductor Devices and ICs, IEEE, Jeju Island, South Korea, May 2007, pp. 2932.
    4. 4)
      • 3. Wellner, E.L., Bendre, A.R.: ‘IGCTs vs. IGBTs for circuit breakers in advanced ship electrical systems’. Proc. Int. Conf. IEEE Electric Ship Technologies Symp., Baltimore, Maryland, USA, April 2009, pp. 400405.
    5. 5)
      • 14. ABB IGCT 5SHY-35L4512 and ABB IGCT 5SHY Datasheet, http://www.abb.com, accessed June 2017.
    6. 6)
      • 12. Arnold, M., Wikstroem, T., Otani, Y., et al: ‘High temperature operation of HPT + IGCTs’. Proc. Int. Conf. Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Power Quality, Nürnberg, Germany, May 2011, pp. 3237.
    7. 7)
      • 20. Johnson, C.M., Palmer, P.R.: ‘Simulation of wafer-scale GTO thyristors in circuits’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 308313.
    8. 8)
      • 16. Stiasny, T., Streit, P.: ‘A new combined local and lateral design technique for increased SOA of large area IGCTs’. Proc. Int. Conf. The 17th Int. Symp. on Power Semiconductor Devices and ICs, IEEE, Santa Barbara, USA, May 2005, pp. 203206.
    9. 9)
      • 1. Roodenburg, B., Taffone, A., Gilardi, E., et al: ‘Combined ZVS–ZCS topology for high-current direct current hybrid switches: design aspects and first measurements’, IET Electr. Power Appl., 2007, 1, (2), pp. 183192.
    10. 10)
      • 2. Callavik, M., Blomberg, A., Häfner, J., et al: ‘The hybrid HVDC breaker’. ABB Grid Systems Technical Paper, 2012, http://www.abb.com, accessed June 2017.
    11. 11)
      • 10. Novello, L., Baldo, F., Ferro, A., et al: ‘Development and testing of a 10-kA hybrid mechanical–static DC circuit breaker’, IEEE Trans. Appl. Supercond., 2011, 21, (6), pp. 36213627.
    12. 12)
      • 17. Satoh, K., Morishita, K., Hirano, N., et al: ‘New design approach for ultra high power GCT thyristor’. Proc. Int. Conf. the 11th Int. Symp. on Power Semiconductor Devices and ICs, IEEE, Toronto, Canada, May 1999, pp. 351354.
    13. 13)
      • 6. Wang, X., Caiafa, A., Hudgins, J.L., et al: ‘Implementation and validation of a physics-based circuit model for IGCT with full temperature dependencies’. Proc. Int. Conf. Power Electronics Specialists Conf., Aachen, Germany, June 2004, pp. 597603.
    14. 14)
      • 9. Meyer, J.M., Rufer, A.: ‘A DC hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (IGCTs)’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 646651.
    15. 15)
      • 13. Palmer, P.R., Johnson, C.M.: ‘Characterizing the turn-off performance of multi-cathode GTO thyristors using thermal imaging’, IEEE Trans. Power Electron., 1990, 5, (3), pp. 357362.
    16. 16)
      • 5. Larruskain, D.M., Zamora, I., Mazón, A.J., et al: ‘Transmission and distribution networks: ac versus DC’, http://www.solarec-egypt.com/resources/Larruskain_HVAC_to_HVDC.pdf, accessed June 2017.
    17. 17)
      • 21. Kamon, M., Tsuk, M.J., White, J.K.: ‘FASTHENRY: a multipole-accelerated 3-D inductance extraction program’, IEEE Trans. Microw. Theory Tech., 1994, 42, (9), pp. 17501758.
    18. 18)
      • 15. Stiasny, T., Oedegard, B., Carroll, E.: ‘Lifetime engineering for the next generation of application-specific IGCTs’ (Drives & Controls, London, 2001).
    19. 19)
      • 8. Steurer, M., Frohlich, K., Holaus, W., et al: ‘A novel hybrid current-limiting circuit breaker for medium voltage: principle and test results’, IEEE Trans. Power Deliv., 2003, 18, (2), pp. 460467.
    20. 20)
      • 7. Xu, Z., Zhang, B., Sirisukprasert, S., et al: ‘The emitter turn-off thyristor-based DC circuit breaker’. Proc. Int. Conf. Power Engineering Society Winter Meeting, New York, USA, January 2002, pp. 288293.
    21. 21)
      • 18. Satoh, K., Nakagawa, T., Yamamoto, M., et al: ‘6 kV/4 kA gate commutated turn-off thyristor with operation DC voltage of 3.6 kV’. The 10th Int. Symp. on Power Semiconductor Devices and ICs, IEEE, Kyoto, Japan, June 1998, pp. 205208.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0235
Loading

Related content

content/journals/10.1049/iet-pel.2017.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address