Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis, design and implementation of a DC/DC boost resonant-inductor converter with sliding-mode control

This study presents the analysis, design, and implementation of a DC/DC boost resonant-inductor converter with the stable operation when using a sliding-mode control. In addition, the control scheme provides zero-current switching, fast transient response, and soft converter start-up. Thus, the resonant-inductor converter with the proposed control improves notably the performance of the conventional boost converter. The design of the control scheme is facilitated using an averaged large-signal model of the resonant converter. A laboratory prototype is built and tested to validate the expected features of the resonant converter. Selected experimental results are reported and discussed showing an excellent agreement with the results of the theoretical analysis.

References

    1. 1)
      • 6. Sarnago, H., Lucia, O., Mediano, A., et al: ‘Design and implementation of a high-efficiency multiple-output resonant converter for induction heating applications featuring wide bandgap devices’, IEEE Trans. Power Electron., 2014, 5, (29), pp. 25392549.
    2. 2)
      • 16. Barreto, L.H.S.C., Coelho, E.A.A., Farias, V.J., et al: ‘A quasi-resonant quadratic boost converter using a single resonant network’, IEEE Trans. Ind. Electron., 2005, 2, (52), pp. 552557.
    3. 3)
      • 24. Curkovic, M., Jezernik, K., Horvat, R.: ‘FPGA-based predictive sliding mode controller of a three-phase inverter’, IEEE Trans. Ind. Electron., 2013, 2, (60), pp. 637644.
    4. 4)
      • 3. Thenathayalan, D., Lee, C., Park, J.: ‘High-order resonant converter topology with extremely low-coupling contactless transformers’, IEEE Trans. Power Electron., 2016, 3, (31), pp. 23472361.
    5. 5)
      • 9. Wang, J.M., Wu, S.T.: ‘A novel inverter for arc welding machines’, IEEE Trans. Ind. Electron., 2015, 3, (62), pp. 14311439.
    6. 6)
      • 14. Tian, S., Lee, F.C., Li, Q.: ‘A simplified equivalent circuit model of series resonant converter’, IEEE Trans. Power Electron., 2016, 5, (31), pp. 39223931.
    7. 7)
      • 13. Du, Y., Bhat, A.K.S.: ‘Analysis and design of a high-frequency isolated dual-tank LCL resonant AC–DC converter’, IEEE Trans. Ind. Appl., 2016, 2, (52), pp. 15661576.
    8. 8)
      • 12. Trevisan, R., Costanzo, A.: ‘A 1-kW contactless energy transfer system based on a rotary transformer for sealing rollers’, IEEE Trans. Ind. Appl., 2014, 11, (61), pp. 63376345.
    9. 9)
      • 28. Sosa, J.L., Castilla, M., Miret, J., et al: ‘Sliding-mode input-output linearization controller for the DC/DC ZVS CLL-T resonant converter’, IEEE Trans. Ind. Electron., 2012, 3, (59), pp. 15541564.
    10. 10)
      • 1. Konjedic, T., Korosec, L., Truntic, M., et al: ‘DCM-based zero-voltage switching control of a bidirectional DC–DC converter with variable switching frequency’, IEEE Trans. Power Electron., 2016, 4, (31), pp. 32733288.
    11. 11)
      • 20. Castilla, M., de Vicuna, L.G., Matas, J., et al: ‘A comparative study of sliding-mode control schemes for quantum series resonant inverters’, IEEE Trans. Ind. Electron., 2009, 9, (56), pp. 34873495.
    12. 12)
      • 2. Tang, Y., Khaligh, A.: ‘A multiinput bridgeless resonant AC–DC converter for electromagnetic energy harvesting’, IEEE Trans. Power Electron., 2016, 3, (31), pp. 22542263.
    13. 13)
      • 22. Dashtestani, A., Bakkaloglu, B.: ‘A fast settling oversampled digital sliding-mode DC–DC converter’, IEEE Trans. Power Electron., 2015, 2, (30), pp. 10191027.
    14. 14)
      • 26. Ryvkin, S., Schmidt-Obermoeller, R., Steimel Senior, A.: ‘Sliding-mode based control for a three-level inverter drive’, IEEE Trans. Ind. Electron., 2008, 11, (55), pp. 38283835.
    15. 15)
      • 23. Leon-Masich, A., Valderrama-Blavi, H., Bosque-Moncusi, J.M., et al: ‘Sliding-mode control based boost converter for high voltage-low power applications’, IEEE Trans. Ind. Electron., 2015, 1, (62), pp. 229237.
    16. 16)
      • 21. Vicuna, L.G.D., Castilla, M., Miret, J., et al: ‘Sliding-mode control for a single-phase AC/AC quantum resonant converter’, IEEE Trans. Ind. Electron., 2009, 9, (56), pp. 34963504.
    17. 17)
      • 4. Jovanovic, M.M., Irving, B.T.: ‘On-the-fly topology-morphing control – efficiency optimization method for LLC resonant converters operating in wide input- and/or output-voltage range’, IEEE Trans. Power Electron., 2016, 3, (31), pp. 25962608.
    18. 18)
      • 18. Sosa, J., Castilla, M., Miret, J., et al: ‘Modeling and performance analysis of the DC/DC series-parallel resonant converter operating with discrete self-sustained phase-shift modulation technique’, IEEE Trans. Ind. Electron., 2009, 3, (56), pp. 697705.
    19. 19)
      • 19. Seong, H.-W., Kim, H.-S., Park, K.-B., et al: ‘High step-up dc-dc converters using zero-voltage switching boost integration technique and light-load frequency modulation control’, IEEE Trans. Power Electron., 2012, 3, (27), pp. 13831400.
    20. 20)
      • 15. Pan, S., Pan, J., Tian, Z.: ‘A shifted SVPWM method to control DC-link resonant inverters and its FPGA realization’, IEEE Trans. Ind. Electron., 2012, 9, (59), pp. 33833391.
    21. 21)
      • 25. Siew-Chong, T., Lai, Y.M., Tse, C.K.: ‘Indirect sliding mode control of power converters via double integral sliding surface’, IEEE Trans. Power Electron., 2008, 2, (23), pp. 600611.
    22. 22)
      • 17. Joung, G., Cho, J., Chov, G.: ‘A generalized quantum resonant converter using a new quantum resonant module’, IEEE Trans. Power Electron., 1992, 4, (17), pp. 666672.
    23. 23)
      • 7. Sarnago, H., Lucia, O., Mediano, A., et al: ‘Efficient and cost-effective zcs direct ac-ac resonant converter for induction heating’, IEEE Trans. Ind. Electron., 2014, 5, (61), pp. 25462555.
    24. 24)
      • 8. Chen, K., Kumar, N.: ‘Influence of isolation transformer leakage inductance on constant current output of class D series-parallel LCC-type resonant converter for light-emitting diode lighting application’, IET Power Electron., 2014, 6, (7), pp. 13621373.
    25. 25)
      • 5. Lee, S.W., Do, H.L.: ‘Soft-switching two-switch resonant AC–DC converter with high power factor’, IEEE Trans. Ind. Electron., 2016, 4, (63), pp. 20832091.
    26. 26)
      • 11. Namadmalan, A.: ‘Bidirectional current-fed resonant inverter for contactless energy transfer systems’, IEEE Trans. Ind. Appl., 2015, 1, (62), pp. 238245.
    27. 27)
      • 27. Castilla, M., García de Vicuña, L., López, M., et al: ‘On the design of sliding mode control schemes for quantum resonant converters’, IEEE Trans. Power Electron., 2000, 6, (15), pp. 960973.
    28. 28)
      • 10. Dehghani Kiadehi, A., El Khamlichi Drissi, K., Pasquier, C.: ‘Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications’, IEEE Trans. Power Electron., 2016, 4, (31), pp. 29802990.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0234
Loading

Related content

content/journals/10.1049/iet-pel.2017.0234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address