Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Finite-state model predictive power control of three-phase bidirectional AC/DC converter under unbalanced grid faults with current harmonic reduction and power compensation

Under unbalanced grid fault conditions, the current harmonic contents of a three-phase bidirectional AC/DC converter increase significantly and twice grid-frequency ripples exist in both active power and reactive power, which influence the output power quality of the converter. Compared with the conventional finite-state model predictive direct power control (MPDPC), the MPDPC with power compensation (MPDPC-PC) method is proposed for the three-phase bidirectional AC/DC power converter to reduce harmonic currents and output power ripples without extraction of complex positive/negative sequences from the grid voltage/current and phase-locked loop. The power compensation values are expressed by grid voltages and their quadrature signals that lag 90 electrical degrees in the αβ stationary coordinates system. MPDPC-PC exhibits better performance by reducing the harmonic contents of grid currents and eliminating active power or reactive power ripples of the three-phase bidirectional AC/DC converter with flexible reactive power compensation capability. Compared with the MPDPC and linear current control schemes, experimental results confirm the effectiveness of the designed method under unbalanced grid conditions.

References

    1. 1)
      • 10. Nejabatkhah, F., Li, Y.W.: ‘Overview of power management strategies of hybrid AC/DC microgrid’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 70727089.
    2. 2)
      • 11. Zhang, Y., Qu, C.: ‘Direct power control of a pulse width modulation rectifier using space vector modulation under unbalanced grid voltages’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 58925901.
    3. 3)
      • 25. Rodriguez, J., Pontt, J., Silva, Csar A., et al: ‘Predictive current control of a voltage source inverter’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 495503.
    4. 4)
      • 23. Riar, B.S., Geyer, T., Madawala, U.K.: ‘Model predictive direct current control of modular multilevel converters: modeling, analysis, and experimental evaluation’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 431439.
    5. 5)
      • 24. Rivera, M., Yaramasu, V., Rodriguez, J.: ‘Model predictive current control of two-level four-leg inverters-part II: experimental implementation and validation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 34693478.
    6. 6)
      • 12. Zhang, Y., Qu, C.: ‘Table-based direct power control for three-phase AC/DC converters under unbalanced grid voltages’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 70907099.
    7. 7)
      • 13. Fang, H., Zhang, Z., Feng, X.: ‘Ripple-reduced model predictive direct power control for active front-end power converters with extended switching vectors and time-optimised control’, IET Power Electron., 2016, 9, (9), pp. 19141923.
    8. 8)
      • 8. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13741382.
    9. 9)
      • 22. Sun, D., Wang, X.: ‘Low-complexity model predictive direct power control for dfig under both balanced and unbalanced grid conditions’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 51865196.
    10. 10)
      • 9. Kim, H.S., Ryu, M.H., Baek, J.W., et al: ‘High-efficiency isolated bidirectional AC–DC converter for a DC distribution system’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16421654.
    11. 11)
      • 29. Uddin, M., Mekhilef, S., Rivera, M.: ‘Experimental validation of minimum cost function-based model predictive converter control with efficient reference tracking’, IET Power Electron., 2015, 8, (2), pp. 278287.
    12. 12)
      • 21. Zhang, Y., Qu, C.: ‘Model predictive direct power control of PWM rectifiers under unbalanced network condition’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 40114022.
    13. 13)
      • 3. Ma, T., Cintuglu, M.H., Mohammed, O.A.: ‘Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 567575.
    14. 14)
      • 28. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of grid-connected inverters for PV systems with flexible power regulation and switching frequency reduction’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 587594.
    15. 15)
      • 7. Wang, P., Jin, C., Zhu, D.: ‘Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 12791290.
    16. 16)
      • 15. Gu, L., Jin, K.: ‘A three-phase isolated bidirectional AC/DC converter and its modified SVPWM algorithm’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54585468.
    17. 17)
      • 14. Chen, H.C., Liao, J.Y.: ‘Bidirectional current sensorless control for the full-bridge AC/DC converter with considering both inductor resistance and conduction voltages’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20712082.
    18. 18)
      • 1. Sha, D., Chen, J.: ‘Bidirectional three-phase high-frequency ac link dc–ac converter used for energy storage’, IET Power Electron., 2015, 8, (12), pp. 25292536.
    19. 19)
      • 19. Eloy-Garcia, J., Arnaltes, S., Rodriguez-Amenedo, J.: ‘Direct power control of voltage source inverters with unbalanced grid voltages’, IET Power Electron., 2008, 1, (3), pp. 395407.
    20. 20)
      • 27. Zhang, Y., Qu, C.: ‘Model predictive direct power control of PWM rectifier under unbalanced grid voltage’, Autom. Electric Power Syst., 2015, 39, (4), pp. 6975.
    21. 21)
      • 30. Liu, T., Xia, C., Shi, T.: ‘Robust model predictive current control of grid-connected converter without alternating current voltage sensors’, IET Power Electron., 2014, 7, (12), pp. 29342944.
    22. 22)
      • 18. Liao, Y.H., Chen, H.C.: ‘Simplified PWM with switching constraint method to prevent circulating currents for paralleled bidirectional AC/DC converters in grid-tied system using graphic analysis’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45734586.
    23. 23)
      • 16. Pahlevani, M., Jain, P.: ‘A fast dc-bus voltage controller for bidirectional single-phase AC/DC converters’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 45364547.
    24. 24)
      • 5. Wang, C., Li, X., Guo, L., et al: ‘A nonlinear disturbance observer based DC-bus voltage control for a hybrid AC/DC microgrid’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 61626177.
    25. 25)
      • 20. Shang, L., Sun, D., Hu, J.: ‘Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions’, IET Power Electron., 2011, 4, (5), pp. 570579.
    26. 26)
      • 6. Eghtedarpour, N., Farjah, E.: ‘Power control and management in a hybrid AC/DC microgrid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14941505.
    27. 27)
      • 26. Svensson, J., Bongiorno, M., Member, S.: ‘Practical implementation of delayed signal cancellation method for phase-sequence separation’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 1826.
    28. 28)
      • 4. Ghodke, A.A., Chatterjee, K.: ‘Three-phase three-level one-cycle controlled bidirectional ac–dc neutral-point-clamped converter without having voltage sensors’, IET Power Electron., 2014, 7, (8), pp. 21612172.
    29. 29)
      • 2. Wang, P., Jin, C., Zhu, D., et al: ‘Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 12791290.
    30. 30)
      • 17. Liao, Y.H.: ‘A novel reduced switching loss bidirectional AC/DC converter PWM strategy with feedforward control for grid-tied microgrid systems’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 15001513.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0209
Loading

Related content

content/journals/10.1049/iet-pel.2017.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address