access icon free Analysis of SiC MOSFET dI/dt and its temperature dependence

A change regulation of variation in drain current (dI D/dt) of silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) and their temperature dependencies are examined. Experimental results show that the magnitude of turn-off dI D/dt decreases with temperature and turn-on dI D/dt increases with increasing temperature. Further analysis shows that turn-on dI D/dt is better than turn-off dI D/dt in terms of temperature dependency and exhibits good linearity. This behaviour results from the positive temperature coefficient of the intrinsic carrier concentration and the negative temperature coefficient of the effective mobility of the electrons in the SiC MOSFET. Other factors that affect the temperature dependency of dI D/dt, such as supply voltage, load current, and gate resistance, are also discussed. A temperature-based analytical model of dI D/dt for the SiC MOSFET is derived using fundamental device physics equations. The calculations generally fit the measurements well. These results are beneficial since they provide a potential approach for junction temperature estimation in the SiC MOSFET. In SiC MOSFET-based practical applications, if turn-on dI D/dt is sensed, then the junction temperature can be derived from the relationship curve of turn-on dI D/dt versus temperature drawn experimentally in advance.

Inspec keywords: MOSFET; electron mobility; silicon compounds; semiconductor device models; wide band gap semiconductors; carrier density

Other keywords: temperature-based analytical model; fundamental device physics equations; MOSFET dI-dt analysis; change regulation; temperature dependence; effective electron mobility; silicon carbide metal-oxide-semiconductor field-effect transistors; negative temperature coefficient; drain current variation; positive temperature coefficient; intrinsic carrier concentration; SiC; junction temperature estimation

Subjects: Semiconductor device modelling, equivalent circuits, design and testing; Insulated gate field effect transistors

References

    1. 1)
      • 7. Ishibashi, H., Nishigaki, A., Umegami, H., et al: ‘An analysis of false turn-on mechanism on high-frequency power devices’. Proc. Energy Conversion Congress and Exposition, Montreal, Canada, September 2015, pp. 22472253.
    2. 2)
      • 4. Millan, J., Godignon, P., Perpina, X., et al: ‘A survey of wide bandgap power semiconductor devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 21552163.
    3. 3)
      • 8. Umegami, H., Nishigaki, A., Hattori, F.: ‘Investigation of false triggering mechanism’, IEEJ Trans. Electron. Electron. Eng., 2014, 9, (1), pp. 102104.
    4. 4)
      • 1. Hudgins, J.: ‘Power electronic devices in the future’, IEEE J. Emerg. Sel. Top. Power Electron., 2013, 1, (1), pp. 1117.
    5. 5)
      • 14. Gurfinkel, M., Xiong, D., Cheung, K.P., et al: ‘Characterization of transient gate oxide trapping in SiC MOSFETs using fast I–V techniques’, IEEE Trans. Power Electron., 2008, 55, (8), pp. 20042012.
    6. 6)
      • 5. Chen, H., Divan, D.: ‘High speed switching issues of high power rated silicon-carbide devices and the mitigation methods’. Proc. Energy Conversion Congress and Exposition, Montreal, Canada, September 2015, pp. 22542260.
    7. 7)
      • 10. Chinthavali, M., Ozpineci, B., Tolbert, L.M.: ‘High-temperature and high-frequency performance evaluation of 4H-SiC unipolar power devices’. Proc. Applied Power Electronics Conf., Austin, USA, March 2005, pp. 322328.
    8. 8)
      • 29. Ahmed, A., Coulbeck, L., Castellazzi, A., et al: ‘Design and test of a PCB rogowski coil for very high dI/dt detection’. Proc. 15th Int. Power Electronics Motion Control Conf., Novi Sad, Serbia, September 2012, pp. 14.
    9. 9)
      • 2. Jiang, D., Burgos, R., Wang, F., et al: ‘Temperature dependent characteristics of SiC devices: performance evaluation and loss calculation’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 10131024.
    10. 10)
      • 26. Mudholkar, M., Ahmed, S., Ericson, M.N., et al: ‘Datasheet driven silicon carbide power MOSFET model’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 22202228.
    11. 11)
      • 17. DiMarino, C., Chen, Z., Danilovic, M., et al: ‘High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs’. Proc. Energy Conversion Congress and Exposition, Denver, USA, September 2013, pp. 32353242.
    12. 12)
      • 12. Zhu, P., Wang, L., Ruan, G., et al: ‘Temperature effects on performance of SiC power transistors (SiC JFET and SiC MOSFET)’. Proc. EPE'15 Energy Conversion Congress and Exposition – Europe, Geneva, Switzerland, September 2015, pp. 449454.
    13. 13)
      • 22. Avenas, Y., Dupont, L., Khatir, Z.: ‘Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – a review’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 20813092.
    14. 14)
      • 9. Nishigaki, A., Umegami, H., Hattori, F., et al: ‘An analysis of false turn-on mechanism on power devices’. Proc. Energy Conversion Congress and Exposition, Pittsburgh, USA, September 2014, pp. 29882993.
    15. 15)
      • 20. Takao, K., Harada, S., Shinohe, T., et al: ‘Performance evaluation of all SiC power converters for realizing high power density of 50 W/cm3’. Proc. International Power Electronics Conf., Sapporo, Japan, June 2010, pp. 21282134.
    16. 16)
      • 11. Yu, L.C., Dunne, G.T., Matocha, K.S., et al: ‘Reliability issues of SiC MOSFETs: a technology for high temperature environments’, IEEE Trans. Device Mater. Reliab., 2010, 10, (4), pp. 418426.
    17. 17)
      • 23. Sundaramoorthy, V.K., Bianda, E., Bloch, R., et al: ‘A study on IGBT junction temperature (Tj) online estimation using gate-emitter voltage (Vge) at turn-off’, Microelectron. Reliab., 2014, 54, (11), pp. 24232431.
    18. 18)
      • 18. Chen, Z., Yao, Y., Boroyevich, D., et al: ‘A 1200-V, 60-A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 23072320.
    19. 19)
      • 19. Othman, D., Berkani, M., Lefebvre, S., et al: ‘Comparison study on performances and robustness between SiC MOSFET & JFET devices – abilities for aeronautics application’, Microelectron. Reliab., 2012, 52, (9–10), pp. 18591864.
    20. 20)
      • 16. Hull, B., Das, M., Husna, F., et al: ‘20 A, 1200 V 4H-SiC DMOSFETs for energy conversion systems’. Proc. Energy Conversion Congress and Exposition, San Jose, USA, September 2009, pp. 112119.
    21. 21)
      • 15. Chen, Z., Boroyevich, D., Burgos, R., et al: ‘Characterization and modeling of 1.2 kV, 20 A SiC MOSFETs’. Proc. Energy Conversion Congress and Exposition, San Jose, USA, September 2009, pp. 14801487.
    22. 22)
      • 13. Lelis, A.J., Habersat, D., Green, R., et al: ‘Time dependence of bias-stress-induced SiC MOSFET threshold voltage instability measurements’, IEEE Trans. Power Electron., 2008, 55, (8), pp. 18351840.
    23. 23)
      • 28. Wang, Q., Shi, J., Xue, Y., et al: ‘Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 55705581.
    24. 24)
      • 24. Hasanuzzaman, M., Islam, S.K., Tolbert, L.M., et al: ‘Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC)’, Solid-State Electron., 2004, 48, (10), pp. 18771881.
    25. 25)
      • 3. Pala, V., Brunt, E.V., Cheng, L., et al: ‘10 and 15 kV silicon carbide power MOSFETs for next-generation energy conversion and transmission systems’. Proc. Energy Conversion Congress and Exposition, Pittsburgh, USA, September 2014, pp. 449454.
    26. 26)
      • 25. Baliga, B.J.: ‘Fundamentals of power semiconductor devices’ (Spring-Verlag, New York, 2008).
    27. 27)
      • 30. Slatter, R., Brusius, M., Knoll, H.: ‘Magnetoresistive current sensors as an enabling technology for ultra-high power density electric drives’. Proc. 9th Int. Conf. on Integrated Power Electronics Systems, Nuremberg, Germany, November 2016, pp. 17.
    28. 28)
      • 6. Wang, J., Chung, H.: ‘Impact of parasitic elements on the spurious triggering pulse in synchronous buck converter’. Proc. Energy Conversion Congress and Exposition, Denver, USA, September 2013, pp. 480487.
    29. 29)
      • 21. Gonzalez, J.O., Alatise, O., Hu, J., et al: ‘An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 79547966.
    30. 30)
      • 27. Luo, Z., Li, H., Iannuzzo, F., et al: ‘Enabling junction temperature estimation via collector-side thermo-sensitive electrical parameters through emitter stray inductance in high-power IGBT modules’, IEEE Trans. Power Electron., 2017, early access articles, DOI 10.1109/TIE.2017.2745442.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0203
Loading

Related content

content/journals/10.1049/iet-pel.2017.0203
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading