http://iet.metastore.ingenta.com
1887

Effective design and implementation of GSS-PLL under voltage dip and phase interruption

Effective design and implementation of GSS-PLL under voltage dip and phase interruption

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The robust operation of grid-connected converters under non-ideal grids is a challenging topic. Synchronising of converters requires accurate estimation of the grid vector angle which is traditionally performed by phase locked loops (PLLs). Separating the grid voltage and current sequence components is essential for controlling converters under non-ideal grids. In this study, an efficient method to separate the grid sequence components using cascaded delayed signal cancellation (CDSC) is developed. The proposed method is a reduced version of the conventional delayed signal cancellation separation technique. Implementing CDSC in the stationary frame enables for using a higher bandwidth without degrading its filtering capability which enables for using the GSS as a pre-filter stage for the traditional synchronous reference frame PLL. Therefore, the obtained grid sequence separator PLL (GSS-PLL) accurately estimates the grid vector angle under severe conditions. The performance of GSS method as well as GSS-PLL is compared to the conventional multiple second-order generalised integrator (MSOGI) method under unbalance, phase interruption and harmonically distorted grids. The accuracy of the proposed method is verified through simulation and experimental tests. The low computational effort of GSS scheme compared to the MSOGI is a significant advantage which encourages its implantation for most of the grid-connected converters.

References

    1. 1)
      • 1. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, pp. 25532580.
    2. 2)
      • 2. Golestan, S., Freijedo, F.D., Guerrero, J.M.: ‘A systematic approach to design high-order phase-locked loops’, IEEE Trans. Power Electron., 2015, 30, pp. 28852890.
    3. 3)
      • 3. Karimi-Ghartemani, M., Khajehoddin, S.A., Jain, P.K., et al: ‘Derivation and design of in-loop filters in phase-locked loop systems’, IEEE Trans. Instrum. Meas., 2012, 61, pp. 930940.
    4. 4)
      • 4. de Souza, H.E.P., Bradaschia, F., Neves, F.A.S., et al: ‘A method for extracting the fundamental-frequency positive-sequence voltage vector based on simple mathematical transformations’. IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 15391547.
    5. 5)
      • 5. Gonzalez-Espin, F., Figueres, E., Garcera, G.: ‘An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid’, IEEE Trans. Ind. Electron., 2012, 59, pp. 27182731.
    6. 6)
      • 6. Golestan, S., Guerrero, J.M., Vidal, A., et al: ‘PLL with MAF-based prefiltering stage: small-signal modeling and performance enhancement’, IEEE Trans. Power Electron., 2016, 31, pp. 40134019.
    7. 7)
      • 7. Golestan, S., Guerrero, J.M., Abusorrah, A.M.: ‘MAF-PLL with phase-lead compensator’, IEEE Trans. Ind. Electron., 2015, 62, pp. 36913695.
    8. 8)
      • 8. Rodriguez, P., Luna, A., Ciobotaru, M., et al: ‘Advanced grid synchronization system for power converters under unbalanced and distorted operating conditions’. IECON 2006 – 32nd Annual Conf. on IEEE Industrial Electronics, 2006, pp. 51735178.
    9. 9)
      • 9. Rodriguez, P., Luna, A., Candela, I., et al: ‘Grid synchronization of power converters using multiple second order generalized integrators’. Industrial Electronics, 2008. IECON 2008. 34th Annual Conf. of IEEE, 2008, pp. 755760.
    10. 10)
      • 10. Svensson, J., Bongiorno, M., Sannino, A.: ‘Practical implementation of delayed signal cancellation method for phase-sequence separation’, IEEE Trans. Power Deliv., 2007, 22, pp. 1826.
    11. 11)
      • 11. Wang, Y.F., Li, Y.W.: ‘Grid Synchronization PLL Based on Cascaded Delayed Signal Cancellation’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 19871997.
    12. 12)
      • 12. Wang, Y.F., Li, Y.W.: ‘Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection’, IEEE Trans. Ind. Electron., 2013, 60, pp. 14521463.
    13. 13)
      • 13. Golestan, S., Freijedo, F.D., Vidal, A., et al: ‘An efficient implementation of generalized delayed signal cancellation PLL’, IEEE Trans. Power Electron., 2016, 31, pp. 10851094.
    14. 14)
      • 14. Hamed, H.A., Abdou, A.F., Bayoumi, E., et al: ‘Frequency adaptive CDSC-PLL using axis drift control under adverse grid condition’, IEEE Trans. Ind. Electron., 2017, 64, pp. 26712682.
    15. 15)
      • 15. Wang, Y.F., Li, Y.W.: ‘Analysis and digital implementation of cascaded delayed-signal-cancellation PLL’, IEEE Trans. Power Electron., 2011, 26, pp. 10671080.
    16. 16)
      • 16. Hamed, H.A., Abdou, A.F., Bayoumi, E.H.E., et al: ‘New current references calculation for dual vector controlled three level active rectifiers under asymmetrical voltage peration’, Int. J. Ind. Electron. Drives, 2015, 2, p. 11.
    17. 17)
      • 17. Alepuz, S., Busquets-Monge, S., Bordonau, J., et al: ‘Control strategies based on symmetrical components for grid-connected converters under voltage dips’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 21622173.
    18. 18)
      • 18. Song, H.-S., Nam, K.: ‘Dual current control scheme for PWM converter under unbalanced input voltage conditions’, IEEE Trans. Ind. Electron., 1999, 46, (5), pp. 953959.
    19. 19)
      • 19. Yongsug, S., Lipo, T.A.: ‘Control scheme in hybrid synchronous stationary frame for PWM AC/DC converter under generalized unbalanced operating conditions’, IEEE Trans. Ind. Appl., 2006, 42, pp. 825835.
    20. 20)
      • 20. Roiu, D., Bojoi, R.I., Limongi, L.R., et al: ‘New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions’, IEEE Trans. Ind. Appl., 2010, 46, pp. 268277.
    21. 21)
      • 21. Suh, Y., Go, Y., Rho, D.: ‘A comparative study on control algorithm for active front-end rectifier of large motor drives under unbalance input’, IEEE Trans. Ind. Appl., 2011, 47, p. 9.
    22. 22)
      • 22. Siemaszko, D.: ‘Grid synchronization of power converters to weak unbalanced networks with disturbances’. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, 2012, pp. 16.
    23. 23)
      • 23. Siemaszko, D.: ‘Positive and negative sequence control for power converters under weak unbalanced networks’. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, 2012, pp. 16.
    24. 24)
      • 24. Suh, Y., Tijeras, V., Lipo, T.A., et al: ‘A nonlinear control of the instantaneous power in dq synchronous frame for PWM AC/DC converter under generalized unbalanced operating conditions’. Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 2002, vol. 2 pp. 11891196.
    25. 25)
      • 25. Magueed, F.A., Sannino, A., Svensson, J.: ‘Design of robust converter interface for wind power applications’, Wind Energy, 2005, 8, pp. 319332.
    26. 26)
      • 26. Sun, D., Wang, X., Fang, Y.: ‘Backstepping direct power control without phase-locked loop of AC/DC converter under both balanced and unbalanced grid conditions’, IET Power Electron., 2016, 9, pp. 16141624.
    27. 27)
      • 27. Le, T.N.: ‘Kompensation schnell veränderlicher Blindströme eines rehstromverbrauchers’, etzArchiv, Bd. 11, (in German), 1989, vol. 8, pp. 249253.
    28. 28)
      • 28. Zhu, R., Tang, Y., Wu, X.: ‘Duty cycle-based three-level space-vector pulse-width modulation with overmodulation and neutral-point balancing capabilities for three-phase neutral-point clamped inverters’, IET Power Electron., 2015, 8, pp. 19311940.
    29. 29)
      • 29. Rodriguez, P., Sainz, L., Bergas, J.: ‘Synchronous double reference frame PLL applied to a unified power quality conditioner’. 10th Int. Conf. on Harmonics and Quality of Power. Proc. (Cat. No.02EX630), 2002, vol. 2, pp. 614619.
    30. 30)
      • 30. Sang-Joon, L., Jun-Koo, K., Seung-Ki, S.: ‘A new phase detecting method for power conversion systems considering distorted conditions in power system’. Conf. Record of the 1999 IEEE Industry Applications Conf. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), 1999, vol. 4, pp. 21672172.
    31. 31)
      • 31. Karimi-Ghartemani, M., Iravani, M.R.: ‘A method for synchronization of power electronic converters in polluted and variable-frequency environments’, IEEE Trans. Power Syst., 2004, 19, pp. 12631270.
    32. 32)
      • 32. Rodríguez, P., Teodorescu, R., Candela, I., et al: ‘New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions’. 2006 37th IEEE Power Electronics Specialists Conf., 2006, pp. 17.
    33. 33)
      • 33. Yazdani, D., Mojiri, M., Bakhshai, A., et al: ‘A fast and accurate synchronization technique for extraction of symmetrical components’, IEEE Trans. Power Electron., 2009, 24, pp. 674684.
    34. 34)
      • 34. Souza, H., Neves, F., Cavalcanti, M., et al: ‘Frequency adaptive phase-sequence separation method based on a generalized delayed signal cancelation method’. 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 568572.
    35. 35)
      • 35. Rodríguez, P., Luna, A., Muñoz-Aguilar, R.S., et al: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electron., 2012, 27, pp. 99112.
    36. 36)
      • 36. Rodriguez, P., Luna, A., Candela, I., et al: ‘Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions’, IEEE Trans. Ind. Electron., 2011, 58, pp. 127138.
    37. 37)
      • 37. Papadopoulos, K.G., Margaris, N.I.: ‘Extending the symmetrical optimum criterion to the design of PID type-p control loops’, J. Process Control, 2012, 22, pp. 1125.
    38. 38)
      • 38. Golestan, S., Ramezani, M., Guerrero, J.M., et al: ‘dq-frame cascaded delayed signal cancellation- based PLL: analysis, design, and comparison with moving average filter-based PLL’, IEEE Trans. Power Electron., 2015, 30, pp. 16181632.
    39. 39)
      • 39. Golestan, S., Guerrero, J.M., Vasquez, J.C.: ‘A robust and fast synchronization technique for adverse grid conditions’, IEEE Trans. Ind. Electron., 2017, 64, pp. 31883194.
    40. 40)
      • 40. Park, J.-S., Nguyen, T.H., Lee, D.-C.: ‘Advanced SOGI-FLL scheme based on fuzzy logic for single-phase grid-connected converters’, J. Power Electron., 2014, 14, pp. 598607.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0178
Loading

Related content

content/journals/10.1049/iet-pel.2017.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address