access icon free Junction temperature estimation of IGBT module via a bond wires lift-off independent parameter V gE-np

An electrical method for junction temperature estimation of insulated-gate bipolar transistors (IGBTs) is presented in this study. Owing to the parasitic inductance between bond wire and main emitter terminal L E. The temperature-dependent falling collector current during turn-off transition would cause a negative voltage drop in the gate-main emitter voltage waveform v gE. Therefore, this negative voltage drop V gE-np is proportional to the junction temperature. A double-pulse test circuit is developed to verify the accuracy and feasibility of the proposed method. The impacts of collector–emitter voltage V ce, collector current I c and bond-wires cut-off are also be discussed theoretically and experimentally. The experimental results show that the proposed V gE-np has a linear relationship with junction temperature as theoretical analysis and it is a bond-wires cut-off independent parameter in some special test point, which offers an effective way to estimate junction temperature without package destruction. The advantages of the proposed method include good linearity, bond-wires failure immunity and adequate sensitivity with junction temperature.

Inspec keywords: insulated gate bipolar transistors

Other keywords: insulated-gate bipolar transistors; parasitic inductance; temperature-dependent falling collector current; negative voltage drop; bond wire lift-off independent parameter; IGBT module; collector-emitter voltage; junction temperature estimation; turn-off transition; main emitter terminal; electrical method; double-pulse test circuit; bond-wire cut-off; bond-wire failure immunity; gate-main emitter voltage waveform

Subjects: Bipolar transistors; Insulated gate field effect transistors

References

    1. 1)
      • 8. Bruckner, T., Bernet, S.: ‘Estimation and measurement of junction temperatures in a three-level voltage source converter’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 312.
    2. 2)
      • 20. Niu, H., Lorenz, R.D.: ‘Sensing power MOSFET junction temperature using gate drive turn-on current transient properties’. Proc. Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 29092916.
    3. 3)
      • 18. Niu, H., Lorenz, R.D.: ‘Sensing IGBT junction temperature using gate drive output transient properties’. Proc. Applied Power Electronics Conf. Exposition (APEC), Charlotte, NC, 2015, pp. 24922499.
    4. 4)
      • 7. Wang, Z., Qiao, W.: ‘An online frequency-domain junction temperature estimation method for IGBT modules’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46334637.
    5. 5)
      • 26. Vinod, K.: ‘Insulated gate bipolar transistor IGBT theory and design’ (Wiley-IEEE, NJ, 2003).
    6. 6)
      • 1. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14411451.
    7. 7)
      • 9. Wang, Z., Qiao, W.: ‘A physics-based improved Cauer-type thermal equivalent circuit for IGBT modules’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 67816786.
    8. 8)
      • 16. Luo, H., Chen, Y., Sun, P., et al: ‘Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 51225132.
    9. 9)
      • 17. Zhang, Z., Wang, F., Costinett, D.J., et al: ‘Online junction temperature monitoring using turn-off delay time for silicon carbide power devices’. Proc. Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 17.
    10. 10)
      • 6. Alavi, O., Abdollah, M., Viki, A.H.: ‘Assessment of thermal network models for estimating IGBT junction temperature of a buck converter’. Proc. 2017 Eighth Power Electronics, Drive Systems & Technologies Conf. (PEDSTC), Mashhad, Iran, 2017, pp. 102107.
    11. 11)
      • 2. Fabis, P.M., Shum, D., Windischmann, H.: ‘Thermal modeling of diamond-based power electronics package’. Proc. 15th Annual IEEE Semiconductor Thermal, San Diego, CA, USA, March 1999, pp. 98104.
    12. 12)
      • 25. Rodriguez-Blanco, M.A., Claudio-Sanchez, A., Theilliol, D.: ‘A failure-detection strategy for IGBT based on gate-voltage behavior applied to a motor drive system’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 16251633.
    13. 13)
      • 24. Baliga, B.J.: ‘Fundamentals of power semiconductor devices’ (Springer Publishing, USA, 2008).
    14. 14)
      • 21. Sundaramoorthy, V.K., Bianda, E., Bloch, R., et al: ‘Simulations online estimation of junction temperature and current of IGBTs using emitter-auxiliary emitter parasitic inductance’. Proc. PCIM 2014 European Conf. Applications., Nuremberg, Germany, 2014, pp. 690697.
    15. 15)
      • 3. Zhou, L., wu, J., Sun, P., et al: ‘Junction temperature management of IGBT module in power electronic converters’, Microelectron. Reliab., 2014, 54, (12), pp. 27882798.
    16. 16)
      • 10. Eleffendi, M.A., Johnson, M.: ‘Application of Kalman filter to estimate junction temperature in IGBT power modules’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 15761587.
    17. 17)
      • 14. Chen, H., Pickert, V., Atkinson, D.J.: ‘On-line monitoring of the MOSFET device junction temperature by computation of the threshold voltage’. Proc. Third IET Int. Conf. Power Electronics, Machines and Drives, Dublin, Ireland, 2006, pp. 440444.
    18. 18)
      • 12. Pramod, G., Bonderup, P.K., Ruiz de, V.A., et al: ‘A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application’. Proc. Integrated Power Systems (CIPS), Nuremberg, Germany, 2014, pp. 16.
    19. 19)
      • 11. Choi, U.M., Blaabjerg, F., Jorgensen, S.: ‘Junction temperature estimation for an advanced active power cycling test’. Proc. Ninth Int. Conf. Power Electronics, Seoul, South Korea, 2015, pp. 29442950.
    20. 20)
      • 13. Xu, Z., Xu, F., Wang, F.: ‘Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation’, IEEE Trans. Ind. Appl., 2015, 62, (6), pp. 34193429.
    21. 21)
      • 23. Barlini, D., Ciappa, M., Castellazzi, A., et al: ‘New technique for the measurement of the static and of the transient junction temperature in IGBT devices under operating conditions’, Microelectron. Reliab., 2006, 46, (9–11), pp. 17721777.
    22. 22)
      • 19. Baker, N., Nielsen, S.M., Iannuzzo, F., et al: ‘IGBT junction temperature measurement via peak gate current’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 34843793.
    23. 23)
      • 22. Sundaramoorthy, V., Bianda, E., Bloch, R., et al: ‘Online estimation of IGBT junction temperature (TJ) using gate-emitter voltage (Vge) at turn-off’. Proc. 15th European Conf. Power Electronics Applications, Lille, France, 2013, pp. 110.
    24. 24)
      • 15. Avenas, Y., Dupont, L., Khatir, Z.: ‘Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – a review’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 30813092.
    25. 25)
      • 5. Musallam, M., Johnson, C.M.: ‘Real-time compact thermal models for health management of power electronics’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14161425.
    26. 26)
      • 4. Lixiang, W., McGuire, J., Lukaszewski, R.A.: ‘Analysis of PWM frequency control to improve the lifetime of PWM inverter’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 922929.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0168
Loading

Related content

content/journals/10.1049/iet-pel.2017.0168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading