Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Total volume evaluation of high-power density non-isolated DC–DC converters with integrated magnetics for electric vehicles

One of the main problems in electric vehicles is the volume of their electrical systems because their bulky components carry additional mass and high cost to the total system. On this topic, interleaving-phases and magnetic coupling techniques have been reported as effective methods for increasing the power density of the DC–DC converters that work between the storage unit and the motor inverter. In that sense, a volume assessment of these topologies would provide a better understanding of the problems to be faced when an electric power train is designed. In this paper, a volume modelling methodology is introduced with the purpose of comparing four different DC–DC converters: Single-Phase Boost, Two-Phase Interleaved with non-coupled inductors, Loosely Coupled Inductor (LCI), and Integrated Winding Coupled Inductor (IWCI). The analysis considers the volume of magnetic components, power devices (conventional and next-generation), cooling devices and capacitors. The methodology can be used as a part of an optimization procedure to minimize the volume of DC–DC converters. Conclusively, LCI and IWCI were found effective to miniaturize power converters with a power density of 8.4 W/cc and 9.66 W/cc, respectively. Moreover, a maximum efficiency of 98.04% and 97.61% was obtained for a 1kW LCI and IWCI prototypes, respectively.

References

    1. 1)
      • 22. Venkatachalam, K., Sullivan, C.R., Abdallah, T., et al: ‘Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters’. IEEE Workshop on Computers in Power Electronics (COMPEL), 2002, pp. 3641.
    2. 2)
      • 5. Cheng, Y., Trigui, R., Espanet, C., et al: ‘Specifications and design of a PM electric variable transmission for Toyota Prius II’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 41064114.
    3. 3)
      • 30. Drofenik, U., Laimer, G., Kolar, J.W.: ‘Theoretical converter power density limits for forced convection cooling’. Int. PCIM Europe Conf., 2005, pp. 608619.
    4. 4)
      • 3. Martinez, W., Imaoka, J., Kimura, S., et al: ‘Volume Comparison of DC-DC Converters for Electric Vehicles’. IEEE Workshop on Power Electronics and Power Quality Applications-PEPQA, 2015, pp. 16.
    5. 5)
      • 10. Tang, L., Su, G.: ‘An interleaved reduced-component-count multivoltage bus DC/DC converter for fuel cell powered electric vehicle applications’, IEEE Trans. Ind. Appl., 2008, 44, (5), pp. 16381644.
    6. 6)
      • 24. Mühlethaler, J., Biela, J., Kolar, J.W., et al: ‘Improved core-loss calculation for magnetic components employed in power electronic systems’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 964973.
    7. 7)
      • 17. Schroeder, J., Fuchs, F.: ‘Detailed characterization of coupled inductors in interleaved converters regarding the demand for additional filtering’. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 759766.
    8. 8)
      • 20. Kimura, S., Aoto, S., Imaoka, J., et al: ‘Allowable power analysis for high power density DC-DC converters using integrated magnetic components’. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 419432.
    9. 9)
      • 14. Nai-Man Ho, C., Breuninger, H., Pettersson, S., et al: ‘Practical design and implementation procedure of an interleaved boost converter using SiC diodes for PV applications’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 28352845.
    10. 10)
      • 9. Itoh, Y., Kimura, S., Imaoka, J., et al: ‘Inductor loss analysis of various materials in interleaved boost converters’. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 980987.
    11. 11)
      • 35. Su, Y., Hou, D., Lee, F., et al: ‘Low profile coupled inductor substrate with fast transient response’. Applied Power Electronics Conf. and Exposition (APEC), 2015, pp. 11611168.
    12. 12)
      • 2. Pang, Z., Ren, X., Xiang, J., et al: ‘High-frequency DC-DC converter in electric vehicle based on GaN transistors’. IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 17.
    13. 13)
      • 26. Kang, S., Nguyen, H., Maksimovic, D., et al: ‘Efficiency characterization and optimization in Flyback DC-DC converters’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 527534.
    14. 14)
      • 23. Steinmetz, P.: ‘On the law of hysteresis’, Proc. IEEE, 1984, 72, pp. 196221.
    15. 15)
      • 8. Yang, F., Ruan, X., Yang, Y., et al: ‘Interleaved critical current mode boost PFC converter with coupled inductor’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 24042413.
    16. 16)
      • 31. Drofenik, U., Kolar, J.W.: ‘Analyzing the theoretical limits of forced air-cooling by employing advanced composite materials with thermal conductivities >400 W/mK’. 4th Conf. Int. Integrated Power Systems (CIPS), 2006, pp. 16.
    17. 17)
      • 16. Hirakawa, M., Nagano, M., Watanabe, Y., et al: ‘High power density interleaved DC/DC converter using a 3-phase integrated close-coupled inductor set aimed for electric vehicle’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 24512457.
    18. 18)
      • 13. Hirakawa, M., Nagano, M., Watanabe, Y., et al: ‘High power density DC/DC converter using the close-coupled inductors’. IEEE Energy Conversion Congress and Exposition (ECCE), 2009, pp. 17601767.
    19. 19)
      • 27. Eberle, W., Zhiliang, Z., Yan-Fei, L., et al: ‘A practical switching loss model for buck voltage regulators’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 700713.
    20. 20)
      • 6. Kim, H., Chen, H., Maksimović, D., et al: ‘SiC-MOSFET composite boost converter with 22 kW/L power density for electric vehicle application’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 11321144.
    21. 21)
      • 4. Burress, T., Campbell, D., Coomer, C., et al: ‘Evaluation of the 2010 Toyota Prius hybrid synergy drive system’, ORNLlTM-2010/253, (UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2011).
    22. 22)
      • 29. Gerlach, D., Gerty, D., Mahalingam, R., et al: ‘A modular stackable concept for heat removal from 3-D stacked chip electronics by interleaved solid spreaders and synthetic jets’, IEEE Trans. Adv. Packag., 2009, 32, (32), pp. 431439.
    23. 23)
      • 18. Hartnett, K., Hayes, J., Egan, M., et al: ‘CCTT-core split-winding integrated magnetic for high-power DC-DC converters’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 49704984.
    24. 24)
      • 7. Pavlovsky, M., Guidi, G., Kawamura, A.: ‘Assessment of coupled and independent phase designs of interleaved multiphase buck/boost DC–DC converter for EV power train’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 26932704.
    25. 25)
      • 28. Jain, A., Jones, R., Chatterjee, R., et al: ‘A thermal modeling and design of 3D integrated circuits’. 11th Intersociety Conf. Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), 2008, pp. 11391145.
    26. 26)
      • 33. Li, Q., Dong, Y., Lee, F., et al: ‘High-density low-profile coupled inductor design for integrated point-of-load converters’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 547554.
    27. 27)
      • 12. Wen, W., Lee, Y.: ‘A two-channel interleaved boost converter with reduced core loss and copper loss’. IEEE 35th Annual Power Electronics Specialists Conf. (PESC), 2004, pp. 10031009.
    28. 28)
      • 32. Drofenik, U., Stupar, A., Kolar, J.W.: ‘Analysis of theoretical limits of forced-air cooling using advanced composite materials with high thermal conductivities’, IEEE Trans. Compon. Packag. Manufact. Technology, 2011, 1, (4), pp. 528535.
    29. 29)
      • 21. Muhlethaler, J., Biela, J., Kolar, J., et al: ‘Core losses under the DC bias condition based on steinmetz parameters’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 953963.
    30. 30)
      • 15. Imaoka, J., Martinez, W., Kimura, S., et al: ‘A novel integrated magnetic core structure suitable for transformer-linked interleaved boost chopper circuit’, IEEJ J. Ind. Appl., 2014, 3, (5), pp. 395404.
    31. 31)
      • 1. Olejniczak, K., Flint, T., Simco, D., et al: ‘A compact 110 kVA, 140°C ambient, 105°C liquid cooled, all-SiC inverter for electric vehicle traction drives’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2017, pp. 735742.
    32. 32)
      • 34. Guan, Y., Wang, Y., Xu, D., et al: ‘A 1 MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 28762891.
    33. 33)
      • 25. Muhlethaler, J., Kolar, J., Ecklebe, A.: ‘Loss modeling of inductive components employed in power electronic systems’. 8th Int. Conf. Power Electronics – ECCE Asia, 2011, pp. 945952.
    34. 34)
      • 19. Umetani, K., Imaoka, J., Yamamoto, M., et al: ‘Evaluation of the Lagrangian method for deriving equivalent circuits of integrated magnetic components: a case study using the integrated winding coupled inductor’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 547555.
    35. 35)
      • 11. Sartori, H., Hey, H., Pinheiro, J.: ‘An optimum design of PFC boost converters’. 13th European Conf. Power Electronics and Applications, 2009. EPE ‘09.2009, pp. 110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0157
Loading

Related content

content/journals/10.1049/iet-pel.2017.0157
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address