Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-object control of an isolated DC–DC modular multilevel converter

Two medium voltage direct current (MVDC) grids can be connected via an isolated DC–DC modular multilevel converter (DC–DC MMC) to enhance the power transmission and supporting abilities. DC power, DC terminal currents, arm energy balancing and active/reactive power through inner AC link need to be controlled in such a DC–DC MMC, and the submodule and grid fault situations should also be addressed. Therefore, a multi-object controller is inherently required. This study thus proposes a multi-object control frame that can realise not only DC power regulation but also inner dynamic control, reactive power optimisation and fault riding through. To facilitate the controller design, a detailed dynamic model of DC–DC MMC is also derived, and such a model is turned into different forms according to different control objects. The proposed control method and the main design considerations are given in a detailed mathematical way. A full-scale simulation system containing a 6 MW DC–DC MMC, a 20 kV MVDC grid, a 10 kV MVDC grid, and several sources and loads is built to verify the control compatibility, and a down-scale low-power prototype is also built to test the control performance.

References

    1. 1)
      • 15. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
    2. 2)
      • 8. Cui, S., Soltau, N., De Doncker, R.W.: ‘A high step-up ratio soft-switching dc-dc converter for interconnection of MVDC and HVDC grids’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 29863001.
    3. 3)
      • 25. Sun, C., Zhang, J., Cai, X., et al: ‘Voltage balancing control of isolated modular multilevel DC–DC converter for use in DC grids with zero voltage switching’, IET Power Electron., 2016, 9, (2), pp. 270280.
    4. 4)
      • 14. Gowaid, I.A., Adam, G.P., Ahmed, S., et al: ‘Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54395457.
    5. 5)
      • 22. Vatani, M., Bahrani, B., Maryam, S., et al: ‘Indirect finite control set model predictive control of modular multilevel converters’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15201529.
    6. 6)
      • 24. Chen, Y., Zhao, S., Li, Z., et al: ‘Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 5, (1), pp. 124139.
    7. 7)
      • 6. Tabari, M., Yazdani, A.: ‘An energy management strategy for a DC distribution system for power system integration of plug-in electric vehicles’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 659668.
    8. 8)
      • 18. Xing, Z., Ruan, X., You, H., et al: ‘Soft-switching operation of isolated modular DC/DC converters for application in HVDC grids’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 27532766.
    9. 9)
      • 26. Cui, S., Sul, S.: ‘A comprehensive DC short-circuit fault ride through strategy of hybrid modular multilevel converters (MMCs) for overhead line transmission’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 77807796.
    10. 10)
      • 17. Lüth, T., Merlin, M.M.C., Green, T.C., et al: ‘High-frequency operation of a DC/AC/DC system for HVDC applications’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 41074115.
    11. 11)
      • 21. Liang, Y., Liu, J., Zhang, T., et al: ‘Arm current control strategy for MMC-HVDC under unbalanced conditions’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 125134.
    12. 12)
      • 28. Kung, S.H., Kish, J.G.: ‘A modular multilevel HVDC buck-boost converter derived from its switched-mode counterpart’, IEEE Trans. Power Deliv., 2017, 33, (1), pp. 8292, 10.1109/TPWRD.2017.2690635.
    13. 13)
      • 2. Xie, R., Shi, Y., Li, H.: ‘Modular multilevel DAB (M2DAB) converter for shipboard MVDC system with fault protection and ride-through capability’. IEEE Electric Ship Technologies Symp. (ESTS), Alexandria, USA, June 2015, pp. 427432.
    14. 14)
      • 13. Chen, Y., Cui, Y., Wang, X., et al: ‘Design and implementation of the low computational burden phase-shifted modulation for DC–DC modular multilevel converter’, IET Power Electron., 2016, 9, (2), pp. 256269.
    15. 15)
      • 3. Shi, Y., Li, H.: ‘Isolated modular multilevel DC-DC converter with DC fault current control capability based on current-fed dual active bridge for MVDC application’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 21452161.
    16. 16)
      • 11. Engel, S.P., Stieneker, M., Soltau, N., et al: ‘Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 124137.
    17. 17)
      • 19. Zhao, B., Song, Q., Li, J., et al: ‘High-frequency-link modulation methodology of DC–DC transformer based on modular multilevel converter for HVDC application: comprehensive analysis and experimental verification’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 34133424.
    18. 18)
      • 5. Exposito, A.G., Mauricio, J.M., Ortega, J.M.M.: ‘VSC -based MVDC railway electrification system’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 422431.
    19. 19)
      • 27. Yang, S., Tang, Y., Wang, P.: ‘Seamless fault-tolerant operation of a modular multilevel converter with switch open-circuit fault diagnosis in a distributed control architecture’, IEEE Trans. Power Electron., 2017, doi: 10.1109/TPEL.2017.2756849.
    20. 20)
      • 16. Gowaid, I.A., Adam, G.P., Ahmed, S., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 108123.
    21. 21)
      • 29. Jovcic, D., Zhang, H.: ‘Dual channel control with DC fault ride through for MMC-based, isolated DC/DC converter’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 15741582.
    22. 22)
      • 4. Mo, R., Li, H.: ‘Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (1), pp. 7987.
    23. 23)
      • 12. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Bologna PowerTech Conf., Bologna, Italy, June 2003, pp. 16.
    24. 24)
      • 23. Dekka, A., Wu, B., Yaramasu, V., et al: ‘Model predictive control with common-mode voltage injection for modular multilevel converter’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 17671778.
    25. 25)
      • 10. Xie, R., Mo, R., Shi, Y., et al: ‘Comparative study of the DC-DC power conversion module based on dual active bridge converter and modular multilevel converter for shipboard MVDC system’. Proc. IEEE Electric Ship Technologies Symp., Arlington, USA, August 2017, pp. 3643.
    26. 26)
      • 1. Zhang, H., Mollet, F., Saudemont, C., et al: ‘Experimental validation of energy storage system management strategies for a local DC distribution system of more electric aircraft’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39053916.
    27. 27)
      • 9. Zhao, B., Song, Q., Li, J., et al: ‘Modular multilevel high -frequency-link DC transformer based on dual active phase-shift principle for medium-voltage DC power distribution application’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 17791791.
    28. 28)
      • 7. Christe, A., Dujic, D.: ‘Galvanically isolated modular converter’, IET Power Electron., 2016, 9, (12), pp. 23182328.
    29. 29)
      • 20. Moon, J., Park, J., Kang, D., et al: ‘A control method of HVDC-modular multilevel converter based on arm current under the unbalanced voltage condition’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 529536.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0151
Loading

Related content

content/journals/10.1049/iet-pel.2017.0151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address