access icon free Active-clamped ZVS current-fed push–pull isolated dc/dc converter for renewable energy conversion applications

This study introduces a new active-clamped current-fed push–pull dc–dc converter for renewable energy conversion applications. The proposed converter conserves small input current pulsation, high-voltage conversion ratio, zero-voltage switching (ZVS) and zero-current-switching operation for primary switches and rectifier diodes, respectively, over a large load range. Also, the additional active clamping circuit serves to suppress the voltage spike across all primary switches, as well as assists in achieving ZVS operation. So, the low-voltage switches with low on-state resistance can be adopted. These features can reduce switching loss, voltage stress, transformer turns ratio and diode reverse-recovery effect. More importantly, similar characteristics can be obtained with minimised switches compared with the reported converters that enable to reduce the cost and improve the reliability. Detailed steady-state operation, analysis, performance comparison, experimental results and loss breakdown of the proposed converter are fully discussed in this study. Finally, a 520 W prototype verifies the theoretical analysis.

Inspec keywords: DC-DC power convertors; switching convertors; zero current switching; zero voltage switching

Other keywords: zero-current-switching operation; voltage stress; low on-state resistance; high-voltage conversion ratio; primary switches; low-voltage switches; transformer turns ratio; switching loss; zero-voltage switching; rectifier diodes; renewable energy conversion applications; ZCS; diode reverse-recovery effect; active-clamped ZVS current-fed push-pull isolated dc/dc converter

Subjects: DC-DC power convertors; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 19. Blanes, J.M., Garrigos, A., Carrasco, J.A., et al: ‘High-efficiency regulation method for a zero-current and zero-voltage current-fed push–pull converter’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 444452.
    2. 2)
      • 21. Kim, Y.H., Shin, S.C., Lee, J.H., et al: ‘Soft switching current-fed push–pull converter for 250-W AC module applications’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 863872.
    3. 3)
      • 24. Lim, T.C., Williams, B.W., Finney, S.J., et al: ‘Energy recovery snubber circuit for a dc-dc push–pull converter’, IET Trans. Power Electron., 2012, 5, (6), pp. 863872.
    4. 4)
      • 12. Rathore, A.K., Bhat, A.K.S., Oruganti, R.: ‘Analysis, design, and experimental results of wide range ZVS active-clamped L-L type current-fed dc/dc converter for fuel cells to utility interface’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 473485.
    5. 5)
      • 22. Patwardhan, A.A., Deo, M.S., Mangal, M.: ‘18 kw DC–DC converter using push–pull inverter with lossless snubber circuits’. Proc. Power Electronics Drives and Energy Systems (PEDES), 1996, pp. 789793.
    6. 6)
      • 10. Prasanna, U.R., Rathore, A.K.: ‘Extended range ZVS active-clamped current-fed full-bridge isolated dc/dc converter for fuel cell applications: analysis, design and experimental results’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26612672.
    7. 7)
      • 18. Barbi, I., Gules, R.: ‘Isolated DC–DC converters with high-output voltage for TWTA telecommunications satellite applications’, IEEE Trans. Power Electron., 2003, 18, (4), pp. 975984.
    8. 8)
      • 2. Vaisanen, V., Riipinen, T., Hiltunen, J., et al: ‘Design of 10 kW resonant push–pull DC–DC converter for solid oxide fuel cell applications’. Proc. IEEE EPE, 2011, pp. 110.
    9. 9)
      • 29. Kim, E.H., Kwon, B.H.: ‘High step-up resonant push–pull converter with high-efficiency’, IET Power Electron., 2009, 2, (1), pp. 7989.
    10. 10)
      • 17. Chu, C.L., Li, C.H.: ‘Analysis and design of a current-fed zero-voltage switching and zero-current-switching CL-resonant push–pull DC–DC converter’, IET Power Electron., 2009, 2, (4), pp. 456465.
    11. 11)
      • 30. Wang, Z., Li, H.: ‘A soft switching three-phase current-fed bidirectional DC–DC converter with high efficiency over a wide input voltage range’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 669684.
    12. 12)
      • 5. Bilsalam, A., Boonyaroonate, I., Chunkag, V.: ‘High-voltage gain zero-current switching push–pull resonant converter for small energy sources’, IET Power Electron., 2016, 9, (4), pp. 835845.
    13. 13)
      • 3. Patidar, K., Umarikar, A. C.: ‘High step-up pulse-width modulation DC–DC converter based on quasi-Z-source topology’, IET Power Electron., 2015, 8, (4), pp. 477488.
    14. 14)
      • 4. Tseng, K.C., Huang, C.C., Shih, W.Y.: ‘A high step-up converter with a voltage multiplier module for a photovoltaic system’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 30473057.
    15. 15)
      • 31. Hurley, W.G., Wölfle, W.H.: ‘Transformers and inductors for power electronics theory, design and applications’ (John Wiley & Sons Ltd. Publication, 2013).
    16. 16)
      • 15. Ohtsu, S., Yamashita, T., Yamamoto, K., et al: ‘Stability in high-output-voltage push–pull current-fed converters’, IEEE Trans. Power Electron., 1993, 8, (2), pp. 135139.
    17. 17)
      • 14. Quang, N.T., Chiu, H., Lo, Y., et al: ‘Zero-voltage switching current-fed flyback converter for power factor correction application’, IET Power Electron., 2013, 6, (9), pp. 19711978.
    18. 18)
      • 25. Nome, F.J., Barbi, I.: ‘A ZVS clamping mode-current-fed push–pull DC–DC converter’. Proc. IEEE Int. Symp. Industrial Electronics, 1998, pp. 617621.
    19. 19)
      • 6. Yuan, Y., Wu, Q.: ‘One zero-voltage-switching three-transistor push–pull converter’, IET Power Electron., 2013, 6, (7), pp. 12701278.
    20. 20)
      • 9. Watson, R., Lee, F.C.: ‘A soft-switched full-bridge boost converter employing an active-clamp circuit’. Proc. IEEE Power Electronics SPEC Conf., 1996, pp. 19481954.
    21. 21)
      • 16. Weinberg, A.H., Ghislanzoni, L.: ‘A new zero voltage and zero current power switching technique’, IEEE Trans. Power Electron., 1992, 7, (4), pp. 655665.
    22. 22)
      • 27. Nayanasiri, D.R., Beng Foo, G.H., Vilathgamuwa, D.M.:, et al: ‘A switching control strategy for single- and dual-inductor current-fed push–pull converters’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 37613771.
    23. 23)
      • 28. Kwon, J.M., Kim, E.H., Kwon, B.H., et al: ‘High-efficiency fuel cell power conditioning system with input current ripple reduction’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 826834.
    24. 24)
      • 26. Pan, X., Rathore, A.K.: ‘Naturally clamped zero-current commutated soft-switching current-fed push–pull DC/DC converter: analysis, design, and experimental results’, IEEE Trans. Power Electron., 2015, 33, (3), pp. 13181327.
    25. 25)
      • 20. Sree, K.R., Rathore, A.K.: ‘Impulse commutated zero-current switching current-fed push–pull converter: analysis, design, and experimental results’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 363370.
    26. 26)
      • 11. Jang, S.J., Won, C.Y., Lee, B.K., et al: ‘Fuel cell generation system with a new active clamping current-fed half-bridge converter’, IEEE Trans. Energy Convers., 2007, 22, (2), pp. 332340.
    27. 27)
      • 8. Rathore, A.K., Prasanna, U.: ‘Comparison of soft-switching voltage-fed and current-fed bi-directional isolated DC/DC converters for fuel cell vehicles’. Proc. IEEE Int. Symp. Industrial Electronics, 2012, pp. 252257.
    28. 28)
      • 23. Whitaker, B., Martin, D., Cilio, E.: ‘Extending the operational limits of the push–pull converter with SiC devices and an active energy recovery clamp circuit’. Proc. IEEE Applied Power Electronics Conf., 2015, pp. 20232038.
    29. 29)
      • 13. Barbosa, P.M., Barbi, I.: ‘A single-switch flyback-current-fed dc–dc converter’, IEEE Trans. Power Electron., 1998, 13, (3), pp. 466475.
    30. 30)
      • 1. Report: Solar Fastest Growing Renewable in US to 2040, 2012. Available at http://www.ren21.net/status-of-renewables/global-status-report/ accessed November 2017.
    31. 31)
      • 7. Mohr, M., Fuchs, F.-W.: ‘Voltage fed and current fed full bridge converter for the use in three phase grid connected fuel cell systems’. Proc. IEEE Int. Power Electronics Motion Control Conf., 2006, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0144
Loading

Related content

content/journals/10.1049/iet-pel.2017.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading