http://iet.metastore.ingenta.com
1887

NBP-based control strategy for DSTATCOM

NBP-based control strategy for DSTATCOM

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A propounded control strategy called naive back propagation (NBP)-based is implemented in designing of distribution static compensator (DSTATCOM) in this study. The performance of the DSTATCOM using both the proposed and control technique are compared under varying load condition in the three-phase three-wire (3P3W) distribution system. The extraction of both tuned active as well as reactive weighting components are obtained from the accuracy of the control algorithm with respect to proportional–integral controllers. The comparative study reveals with source current harmonics reduction, voltage regulation, load balancing, power factor correction and sizing of VSC. The results demonstrate the robustness of the DSTATCOM in order to show the superiority, reliability, robustness and effectiveness of the proposed approach compared with the conventional one. The effectiveness of both the algorithms are validated through the simulation using MATLAB and real-time implementation conducted in real time digital simulator (RTDS) environment, showing the power quality indices.

References

    1. 1)
      • M. Steurer , M. Andrus , J. Langston .
        1. Steurer, M., Andrus, M., Langston, J., et al: ‘Investigating the impact of pulsed power charging demands on shipboard power quality’. IEEE Proc. Electric Ship Technologies Symp., 2007, pp. 315321.
        . IEEE Proc. Electric Ship Technologies Symp. , 315 - 321
    2. 2)
      • B. Grzegorz , P. Marian . (2012)
        2. Grzegorz, B., Marian, P.: ‘Power theories for improved power quality’ (Springer Verlag, London, 2012).
        .
    3. 3)
      • M.C. Benhabib , S. Saadate .
        3. Benhabib, M.C., Saadate, S.: ‘New control approach for four-wire active power filter based on the use of synchronous reference frame’, Int. J. Electr. Power Energy Syst., 2005, 73, (3), pp. 353362.
        . Int. J. Electr. Power Energy Syst. , 3 , 353 - 362
    4. 4)
      • B. Singh , J. Solanki .
        4. Singh, B., Solanki, J.: ‘A comparison of control algorithms for DSTATCOM’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27382745.
        . IEEE Trans. Ind. Electron. , 7 , 2738 - 2745
    5. 5)
      • C.H. da Silva , R.R. Pereira , L.E.B. DaSilva .
        5. da Silva, C.H., Pereira, R.R., DaSilva, L.E.B., et al: ‘A digital PLL scheme for three-phase system using modified synchronous reference frame’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38143821.
        . IEEE Trans. Ind. Electron. , 11 , 3814 - 3821
    6. 6)
      • R. Salem , H. Abdelhamid , K. Al-Haddad .
        6. Salem, R., Abdelhamid, H., Al-Haddad, K.: ‘A. Lyapunov- function-based control for a three-phases hunt hybrid active filter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14181429.
        . IEEE Trans. Ind. Electron. , 3 , 1418 - 1429
    7. 7)
      • S. Rahmani , K.N. Mendale , K. Al-Haddad .
        7. Rahmani, S., Mendale, K.N., Al-Haddad, K.: ‘Experimental design of a nonlinear control technique for three-phase shunt active power filter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33643375.
        . IEEE Trans. Ind. Electron. , 10 , 3364 - 3375
    8. 8)
      • V. Kamatchi Kannan , N. Rengarajan .
        8. Kamatchi Kannan, V., Rengarajan, N.: ‘Investigating the performance of photovoltaic based DSTATCOM using icosϕ algorithm’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 376386.
        . Int. J. Electr. Power Energy Syst. , 376 - 386
    9. 9)
      • G. Bhubaneswari , M.G. Nair .
        9. Bhubaneswari, G., Nair, M.G.: ‘Design, simulation and analog circuit implementation of a three phase shunt active filter using icosϕ algorithm’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 12221235.
        . IEEE Trans. Power Deliv. , 2 , 1222 - 1235
    10. 10)
      • J. Mishra , I. Saha .
        10. Mishra, J., Saha, I.: ‘Artificial neural networks in hardware: a survey of two decades of progress’, J. Neurocomput., 2010, 74, pp. 239255.
        . J. Neurocomput. , 239 - 255
    11. 11)
      • M. Sunar , A.M.A. Gurain , M. Mohandes .
        11. Sunar, M., Gurain, A.M.A., Mohandes, M.: ‘Substructural neural network controller’, J. Comput. Struct., 2000, 78, pp. 575581.
        . J. Comput. Struct. , 575 - 581
    12. 12)
      • Y. Zou , P. Wang .
        12. Zou, Y., Wang, P.: ‘Harmonic detection based Hopfield neural network optimum algorithm’. Proc. of First Int. Conf. on Computing, Information and Control, 2006, vol. 2, pp. 379382.
        . Proc. of First Int. Conf. on Computing, Information and Control , 379 - 382
    13. 13)
      • H.C. Lin .
        13. Lin, H.C.: ‘Intelligent neural network-based fast power system harmonic detection’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 4352.
        . IEEE Trans. Ind. Electron. , 1 , 43 - 52
    14. 14)
      • D Srinivasan , W.S. Ng , A.C. Liew .
        14. Srinivasan, D, Ng, W.S., Liew, A.C.: ‘Neural-network-based signature recognition for harmonic source identification’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 398405.
        . IEEE Trans. Power Deliv. , 1 , 398 - 405
    15. 15)
      • C.F. Nascimento , A.A. Oliveira , A. Goedtel .
        15. Nascimento, C.F., Oliveira, A.A.Jr., Goedtel, A., et al: ‘Harmonic distortion monitoring for nonlinear loads using neural-network-method’, J. Appl. Soft Comput., 2013, 13, pp. 475482.
        . J. Appl. Soft Comput. , 475 - 482
    16. 16)
      • D. Hunter , H. Yu , M.S. Pukish .
        16. Hunter, D., Yu, H., Pukish, M.S., et al: ‘Selection of proper neural network sizes and architectures – a comparative study’, IEEE Trans. Ind. Inf., 2012, 8, (2), pp. 228240.
        . IEEE Trans. Ind. Inf. , 2 , 228 - 240
    17. 17)
      • S.R. Arya , B. Singh .
        17. Arya, S.R., Singh, B.: ‘Neural network based conductance estimation control algorithm for shunt compensation’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 569577.
        . IEEE Trans. Ind. Inf. , 1 , 569 - 577
    18. 18)
      • S.R. Arya , B. Singh .
        18. Arya, S.R., Singh, B.: ‘Implementation of kernel incremental metalearning algorithm in distribution static compensator’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 11571169.
        . IEEE Trans. Power Electron. , 3 , 1157 - 1169
    19. 19)
      • J.S.R. Jang , C.T. Sun , E. Mizutani . (2008)
        19. Jang, J.S.R., Sun, C.T., Mizutani, E.: ‘Neuro fuzzy and soft computing: a computational approach to learning and machine intelligence’ (Person Education Asia, Delhi, 2008).
        .
    20. 20)
      • D.K. Chaturvedi . (2008)
        20. Chaturvedi, D.K.: ‘Soft computing techniques and its applications in electrical engineering’ (Springer Verlag, Berlin Heidelberg, 2008).
        .
    21. 21)
      • P. Kumar , A. Mahajan .
        21. Kumar, P., Mahajan, A.: ‘Soft computing techniques for the control of an active power filter’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 452461.
        . IEEE Trans. Power Deliv. , 1 , 452 - 461
    22. 22)
      • P. Mitra , G.K. Venayagamoorthy .
        22. Mitra, P., Venayagamoorthy, G.K.: ‘An adaptive control strategy for DSTATCOM applications in an electric ship power system’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 95104.
        . IEEE Trans. Power Electron. , 1 , 95 - 104
    23. 23)
      • A.K. Panda , S.S. Patnaik .
        23. Panda, A.K., Patnaik, S.S.: ‘Analysis of cascaded multilevel inverters for active harmonic filtering in distribution networks’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 216226.
        . Int. J. Electr. Power Energy Syst. , 216 - 226
    24. 24)
      • M Manbachi .
        24. Manbachi, M, et al: ‘Real-time co-simulation platform for smart grid volt-VAR optimization using IEC 61850’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 13921402.
        . IEEE Trans. Ind. Inf. , 4 , 1392 - 1402
    25. 25)
      • A. Sharma , S.C. Srivastava , S. Chakrabarti .
        25. Sharma, A., Srivastava, S.C., Chakrabarti, S.: ‘Testing and validation of power system dynamic state estimators using real time digital simulator (RTDS)’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 23382347.
        . IEEE Trans. Power Syst. , 3 , 2338 - 2347
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0129
Loading

Related content

content/journals/10.1049/iet-pel.2017.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address