access icon free DC offset minimisation of three-phase multilevel inverter configuration under fault and DC link voltage unbalance conditions

In recent days, multilevel inverters are quite popular in the photovoltaic system to improve the power quality. One of the popular multilevel inverters for medium power applications is neutral point clamping inverter. However, with the limited number of switching combinations, energy balancing and fault-tolerant operation is a major issue. The absence of energy balance mechanism may lead to unequal charge and discharge patterns in the batteries used in off-grid applications, which in turn results in the un-equal voltage at the batteries terminals. The difference in voltage between the sources can introduce the DC voltage offset at AC output, which causes serious problems when fed to the transformers or inductive loads like the induction motor. To address this problem, a five-level inverter is proposed which is capable of energy balancing between the two DC sources, minimising the DC voltage offset and able to operate in some fault-tolerant conditions. At the same time, this topology uses less number of switches as compared to conventional three-phase five-level inverters. The proposed topology is developed by combining conventional two-level and three-level inverters. The topology is verified by simulation using Matlab Simulink and tested on a laboratory prototype. The control algorithm for prototype is implemented with the help of Xilinx SPARTAN-6 (XC6SLX9) FPGA board.

Inspec keywords: fault tolerance; minimisation; invertors

Other keywords: control algorithm; two-level inverters; energy balancing; DC link voltage unbalance conditions; Xilinx SPARTAN-6 FPGA board; fault conditions; DC offset minimisation; DC sources; three-level inverters; DC voltage offset; Matlab Simulink; five-level inverter; three-phase multilevel inverter configuration; fault-tolerant conditions

Subjects: Optimisation techniques; DC-AC power convertors (invertors)

References

    1. 1)
      • 19. Mirafzal, B.: ‘Survey of fault-tolerance techniques for three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 51925202.
    2. 2)
      • 28. Himour, K., Ghedamsi, K., Berkouk, E.M.: ‘Supervision and control of grid connected PV-storage systems with the five level diode clamped inverter’, Energy Convers. Manage., 2014, 77, pp. 98107.
    3. 3)
      • 20. Wang, H., Liserre, M., Blaabjerg, F., et al: ‘Transitioning to physics-of-failure as a reliability driver in power electronics’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (1), pp. 97114.
    4. 4)
      • 18. Figarado, S., Sivakumar, K., Ramchand, R., et al: ‘Five-level inverter scheme for an open-end winding induction machine with less number of switches’, IET Power Electron., 2010, 3, (4), pp. 637647.
    5. 5)
      • 8. Busquets-Monge, S., Rocabert, J., Rodriguez, P., et al: ‘Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 27132723.
    6. 6)
      • 9. Boby, M., Pramanick, S., Kaarthik, R.S., et al: ‘Fifth- and seventh-order harmonic elimination with multilevel dodecagonal voltage space vector structure for IM drive using a single DC source for the full speed range’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 6068.
    7. 7)
      • 26. Massoud, A.M., Finney, S.J., Williams, B.W.: ‘Conduction loss calculation for multilevel inverter: a generalized approach for carrier-based PWM technique’. Second Int. Conf. on Power Electronics, Machines and Drives, 2004, vol. 1, pp. 226230.
    8. 8)
      • 29. Prabaharan, N., Palanisamy, K.: ‘Analysis and integration of multilevel inverter configuration with boost converters in a photovoltaic system’, Energy Convers. Manage., 2016, 128, pp. 327342.
    9. 9)
      • 4. Rodriguez, J., Lai, J.-S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    10. 10)
      • 22. Choi, U.-M., Lee, K.-B., Blaabjerg, F.: ‘Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 495508.
    11. 11)
      • 15. Franquelo, L.G., Rodriguez, J., Leon, J., et al: ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 2839.
    12. 12)
      • 5. Colak, I., Kabalci, E., Bayindir, R.: ‘Review of multilevel voltage source inverter topologies and control scheme’, Energy Convers. Manage., 2011, 52, pp. 11141128.
    13. 13)
      • 10. Nair, V, Rahul, A, Pramanick, S., et al: ‘Novel symmetric six-phase induction motor drive using stacked multilevel inverters with a single DC link and neutral point voltage balancing’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 26632670.
    14. 14)
      • 12. Vahedi, H., Labbé, P.A., Al-Haddad, K.: ‘Sensor-less five-level packed U-cell (PUC5) inverter operating in stand-alone and grid-connected modes’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 361370.
    15. 15)
      • 24. Kou, X., Corzine, K.A., Familiant, Y.L.: ‘A unique fault-tolerant design for flying capacitor multilevel inverter’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 979987.
    16. 16)
      • 21. Choi, U.-M., Blaabjerg, F., Lee, K.-B.: ‘Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 26602673.
    17. 17)
      • 27. Derakhshanfar, M.: ‘Analysis of different topologies of multilevel inverters’. Master of Science thesis, Chalmers University of Technology, 2010.
    18. 18)
      • 11. Vahedi, H., Labbe, P.A., Al-Haddad, K.: ‘Balancing three-level neutral point clamped inverter DC bus using closed-loop space vector modulation: real-time implementation and investigation’, IET Power Electron., 2016, 9, (10), pp. 20762084.
    19. 19)
      • 23. Ceballos, S., Pou, J., Robles, E., et al: ‘Fault-tolerant neutral-point clamped converter solutions based on including a fourth resonant leg’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 22932303.
    20. 20)
      • 14. Wu, B.: ‘High-power converters and AC drives’ (Wiley, Hoboken, NJ, USA, 2006, 1st edn.).
    21. 21)
      • 6. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    22. 22)
      • 25. Rao, A.M., Sivakumar, K.: ‘A falut-tolerant single-phase five-level inverter for grid-independent PV systems’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75697577.
    23. 23)
      • 2. Rehman, S., Al-Hadhrami, L.M.: ‘Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia’, Energy, 2010, 35, pp. 49864995.
    24. 24)
      • 17. Babaei, E., Laali, S., Bayat, Z.: ‘A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 922929.
    25. 25)
      • 3. Rajan Singaravel, M.M., Arul Daniel, S.: ‘Studies on battery storage requirement of PV fed wind-driven induction generators’, Energy Convers. Manage., 2013, 67, pp. 3443.
    26. 26)
      • 7. Rajkumar, M.V., Manoharan, P.S., Ravi, A.: ‘Simulation and an experimental investigation of SVPWM technique on a multilevel voltage source inverter for photovoltaic systems’, Int. J. Electr. Power Energy Syst., 2013, 52, pp. 116131.
    27. 27)
      • 13. Rodriguez, J., Bernet, S., Wu, B., et al: ‘Multilevel voltage-source-converter topologies for industrial medium-voltage drives’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29302945.
    28. 28)
      • 16. Gautam, S.P., Kumar, L., Gupta, S.: ‘Hybrid topology of symmetrical multilevel inverter using less number of devices’, IET Power Electron., 2015, 8, (11), pp. 21252135.
    29. 29)
      • 1. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0128
Loading

Related content

content/journals/10.1049/iet-pel.2017.0128
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading