access icon free A simplified structure for three-phase 4-level inverter employing fundamental frequency switching technique

This study describes the design and control of simplified structure of three-phase 4-level inverter. A 4-level dc-link derived from three symmetrical dc voltage supplies and two controlled switches is connected to a three-phase 3-level neutral point clamped (3-level NPC) bridge inverter. By employing the fundamental frequency switching technique, the simplified 4-level inverter can have two distinct modes of operation: 4-level and 2-level. Compared to the well-known three-phase 4-level NPC inverter, the proposed inverter topology comes with series of features including a minimum number of power components, high quality voltage waveform, lower losses and higher efficiency. To ensure the feasibility of the proposed topology with its suggested modulation technique, the prototype of the proposed 4-level inverter is built and the experimental results are given.

Inspec keywords: invertors

Other keywords: three-phase 4-level NPC inverter; symmetrical dc voltage supplies; controlled switches; high quality voltage waveform; inverter topology; modulation technique; three-phase 3-level neutral point clamped bridge inverter; fundamental frequency switching technique; 4-level dc-link; 3-level NPC bridge inverter

Subjects: DC-AC power convertors (invertors); Power electronics, supply and supervisory circuits

References

    1. 1)
      • 1. Rodriguez, J., Franqueolo, L.G., Kouro, S., et al: ‘Multilevel converters: an enabling technology for high-power applications’, Proc. IEEE, 2009, 97, pp. 17861817.
    2. 2)
      • 17. Mekhilef, S., Abdul Kadir, M.N.: ‘Voltage control of three-stage hybrid multilevel inverter using vector transformation’, IEEE Trans. Power Electron., 2010, 10, pp. 25992606.
    3. 3)
      • 9. McGrath, B.P., Meynard, T., Gateau, G., et al: ‘Optimal modulation of flying capacitor and stacked multicell converters using a state machine decoder’, IEEE Trans. Power Electron., 2007, 22, pp. 508516.
    4. 4)
      • 11. Ilves, K., Antonopoulos, A., Norrga, S., et al: ‘A new modulation method for the modular multilevel converter allowing fundamental switching frequency’, IEEE Trans. Power Electron., 2012, 27, pp. 34823494.
    5. 5)
      • 2. Franquelo, L.G., Rodriguez, J., Leon, I., et al: ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., 2008, 2, pp. 2839.
    6. 6)
      • 24. Waltrich, G., Barbi, I.: ‘Three-phase cascaded multilevel inverter using power cells with two inverter legs in series’, IEEE Trans. Ind. Appl., 2010, 57, (8), pp. 26052612.
    7. 7)
      • 20. Barzegarkhoo, R., et al: ‘Cascaded multilevel inverter using series connection of novel capacitor-based units with minimum switch count’, IET Power Electron., 2016, 9, pp. 20602075.
    8. 8)
      • 7. Bruckner, T., Bernet, S., Guldner, H.: ‘The active NPC converter and its loss balancing control’, IEEE Trans. Ind. Electron., 2005, 52, pp. 855868.
    9. 9)
      • 10. Ferreira, J.A.: ‘The multilevel modular DC converter’, IEEE Trans. Power Electron., 2013, 28, pp. 44604465.
    10. 10)
      • 19. Wu, K.D., Hurng, L.J., Jinn, C.W., et al: ‘Seven-level cascade inverter with asymmetrical DC voltages’, IET Power Electron., 2017, 10, pp. 112119.
    11. 11)
      • 25. Belkamel, H., Mekhilef, S., Masaoud, A., et al: ‘Novel three-phase asymmetrical cascaded multilevel voltage source inverter’, IET Power Electron., 2013, 6, pp. 16961706.
    12. 12)
      • 15. Pereda, J., Dixon, J.: ‘Cascaded multilevel converters: optimal asymmetries and floating capacitor control’, IEEE Trans. Ind. Electron., 2013, 60, pp. 47844793.
    13. 13)
      • 14. Babaei, E., Alilu, S., Laali, S., et al: ‘A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge’, IEEE Trans. Ind. Electron., 2014, 61, pp. 39323939.
    14. 14)
      • 23. Raushan, R., Mahato, B., Jana, K.C.: ‘Comprehensive analysis of a novel three-phase multilevel inverter with minimum number of switches’, IET Power Electron., 2016, 9, pp. 16001607.
    15. 15)
      • 21. Ebrahimi, J., et al: ‘A new multilevel converter topology with reduced number of power electronic components’, IEEE Trans. Ind. Electron., 2012, 59, pp. 655667.
    16. 16)
      • 4. Colak, I., Kabalci, E., Bayindir, I., et al: ‘Review of multilevel voltage source inverter topologies and control schemes’, Energy Convers. Manage., 2011, 52, pp. 11141128.
    17. 17)
      • 5. Rodriguez, J., Bernet, S., Steimer, P.K., et al: ‘A survey on neutral-point-clamped inverters’, IEEE Trans. Ind. Electron., 2010, 57, pp. 22192230.
    18. 18)
      • 6. Rodriguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, pp. 724738.
    19. 19)
      • 22. Masaoud, A., Ping, H. W., Mekhilef, S., et al: ‘A new five-level single-phase inverter employing a space vector current control’, Electr. Power Compon. Syst., 2014, 42, pp. 11211130.
    20. 20)
      • 12. dos Santos, E.C.., et al: ‘Nested multilevel configurations’, IEEE Energy Convers. Congress Expos. (ECCE), 2012, pp. 324329.
    21. 21)
      • 13. Rahim, N.A., et al: ‘Transistor-clamped h-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing’, IEEE Trans. Ind. Electron., 2013, 60, pp. 29432956.
    22. 22)
      • 26. Corzine, K.A., Baker, J.R.: ‘Multilevel voltage-source duty-cycle modulation: analysis and implementation’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 10091016.
    23. 23)
      • 16. Masaoud, A., Ping, H. W., Mekhilef, S., et al: ‘Design and Implementation of a new multilevel DC-Link three-phase inverter’, J. Power Electron., 2014, 14, pp. 292301.
    24. 24)
      • 18. Gui-Jia, S.: ‘Multilevel DC-link inverter’, IEEE Trans. Ind. Appl., 2005, 41, pp. 848854.
    25. 25)
      • 3. Baker, R.H., Bannister, L.H.: ‘Electric power converter’, U.S. Patent 3,867,643, February 1975.
    26. 26)
      • 8. Li, J., Bhattacharya, S., Huang, A.Q., et al: ‘A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation’, IEEE Trans. Power Electron., 2011, 26, pp. 961972.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0123
Loading

Related content

content/journals/10.1049/iet-pel.2017.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading