http://iet.metastore.ingenta.com
1887

Supercapacitor-assisted low dropout regulator technique: a new design approach to achieve high-efficiency linear DC–DC converters

Supercapacitor-assisted low dropout regulator technique: a new design approach to achieve high-efficiency linear DC–DC converters

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Approximate efficiency of a linear regulator is given by the ratio of regulated output voltage to input voltage. Higher voltage difference between the input and the output means a lower efficiency due to heavy losses in the series power semiconductor. Supercapacitor-assisted low dropout regulator (SCALDO) is an emerging linear DC–DC converter technique, where a supercapacitor (SC) is used to reduce the voltage drop across the series transistor in a linear regulator where the SC acts as a lossless dropper. The circuit operates at a very low frequency decided by the size of the SC. An efficiency multiplication factor such as 1.33, 2, or 3 is achieved depending on the configuration. This study presents the essentials of its generalised theory, few prototype implementations, and a discussion on SCALDO properties. Typical efficiencies of 12–5 and 5–1.2 V linear regulators are around 42 and 24%, respectively. When SCALDO prototypes are built, the authors achieve respective end-to-end efficiencies of 79–81 and 58–73%. A loss analysis summary and further developments of the novel technique are also provided, in addition to a discussion to indicate that this is not a variation of the switched capacitor converters.

References

    1. 1)
      • 1. Schneuwly, A., Gallay, R.: ‘Properties and applications of supercapacitors from the state-of-the-art to future trends’. Proc. of PCIM, 2000.
    2. 2)
      • 2. Reichbach, N., Mellincovsky, M., Peretz, M., et al: ‘Long-term wide-temperature supercapacitor Ragone plot based on manufacturer datasheet’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 404406.
    3. 3)
      • 3. Barrade, P: ‘Series connection of supercapacitors: comparative study of solutions for the active equalization of the voltages’. Proc. Int. Conf. on Modelling and Simulation of Electric Machines, Converters and Systems, 2002.
    4. 4)
      • 4. Liu, Y., Du, W., Xiao, L., et al: ‘Sizing a hybrid energy storage system for maintaining power balance of an isolated system with high penetration of wind generation’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 32673275.
    5. 5)
      • 5. Hu, A.P., You, Y.W., Chen, F.Y.B., et al: ‘Wireless power supply for ICP devices with hybrid supercapacitor and battery storage’, IEEE J. Emerg. Sel. Topics Power Electron., 2016, 4, (1), pp. 273279.
    6. 6)
      • 6. Barrade, P., Delalay, S., Rufer, A.: ‘Direct connection of supercapacitors to photovoltaic panels with on–off maximum power point tracking’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 283294.
    7. 7)
      • 7. Odeim, F., Roes, J., Heinzel, A.: ‘Power management optimization of a fuel cell/battery/supercapacitor hybrid system for transit bus applications’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 57835788.
    8. 8)
      • 8. Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: ‘A power smoothing system based on supercapacitors for renewable distributed generation’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 343350.
    9. 9)
      • 9. Yuhimenko, V., Lerman, C., Kuperman, A.: ‘DC active power filter-based hybrid energy source for pulsed power loads’, IEEE J. Emerg. Sel. Topics Power Electron., 2015, 3, (4), pp. 10011010.
    10. 10)
      • 10. Kularatna, N.: ‘Supercapacitors improve the performance of linear power-management circuits: unique new design options when capacitance jump from micro-farads to farads with a low equivalent series resistance’, IEEE Power Electron. Mag., 2016, 3, (1), pp. 4559.
    11. 11)
      • 11. Zhang, L., Song, J.Y., Zou, J.Y., et al: ‘High voltage supercapacitors for energy storage devices applications’. Proc. of Symp. on Electromagnetic Launch Technology, 2008, pp. 14.
    12. 12)
      • 12. Jayalakshmi, M., Balasubramanian, K.: ‘Simple capacitors to supercapacitors – an overview’, Int. J. Electrochem. Sci., 2008, 3, pp. 11961216.
    13. 13)
      • 13. Spillane, D., O’ Sullivan, D., Egan, M.G., et al: ‘Supervisory control of a HV integrated starter-alternator with ultracapacitor support within the 42 V automotive electrical system’. Proc. Applied Power Electronics Conf. and Exposition, 2003, pp. 11111117.
    14. 14)
      • 14. Kularatna, N.: ‘Supercapacitors improve the performance of linear power-management circuits’, IEEE Power Electron. Mag., 2016, 3, (1), pp. 4559.
    15. 15)
      • 15. Gunawardane, K.: ‘Analysis on supercapacitor assisted low dropout regulators’. PhD thesis, The University of Waikato, New Zealand, 2014.
    16. 16)
      • 16. Kularatna, N., Fernando, J.: ‘High current voltage regulator’., US Patent, 9707 430 B2, March 2011.
    17. 17)
      • 17. Kankanamge, K., Kularatna, N.: ‘Supercapacitor assisted LDO (SCALDO) technique- an extra low frequency design approach to high efficiency DC-DC converters and how it compares with the classical switched capacitor converters’. Proc. IEEE Applied Power Electronics Conf., March 2013, pp. 19791984.
    18. 18)
      • 18. Kularatna, N.: ‘Energy storage devices for electronic systems’ (Elsevier, USA, 2014).
    19. 19)
      • 19. Gunawardane, K., Kularatna, N., Steyn-Ross, D.A.: ‘Loss estimation and validation of the SCALDO implementation’. Proc. IEEE 11th Int. Conf. in Power Electronics and Drive Systems, 2015, pp. 8992.
    20. 20)
      • 20. Dispennette, J.: ‘Ultracapacitors bring portability to power’ (Power Electronics Technology Magazine, 2005).
    21. 21)
      • 21. Mars, P.: ‘Coupling a supercapacitor with a small energy harvesting source’. EDN Magazine. Available athttp://www.edn.com/design/components-and-packaging/4374932/1/, accessed 12 December 2016.
    22. 22)
      • 22. ‘Printed circuit board (PCB) design issues’, Analog Devices. Available at http://www.analog.com/library/analogdialogue/archives/, accessed 31 November 2016.
    23. 23)
      • 23. Kankanamge, K., Kularatna, N., Steyn-Ross, D.A.: ‘Laplace transform-based theoretical foundations and experimental validation-low frequency supercapacitor circulation for efficiency improvements in linear regulators’, IET Power Electron., 2012, 5, (9), pp. 17851792.
    24. 24)
      • 24. Kankanamge, K., Kularatna, N.: ‘Improving the end-to-end efficiency of DC–DC converters based on a supercapacitor assisted low dropout regulator (SCALDO) technique’, IEEE Trans. Ind. Electron., 2013, 61, (1), pp. 223230.
    25. 25)
      • 25. Kankanamge, K., Kularatna, N.: ‘Implementation aspects of a new linear regulator topology based on low frequency supercapacitor circulation’. Proc. IEEE Applied Power Electronics Conf., 2012, pp. 23402344.
    26. 26)
      • 26. Kularatna, N., Fernando, J., Kankanamge, K., et al: ‘A low frequency supercapacitor circulation technique to improve the efficiency of linear regulators based on LDO ICs’. Proc. IEEE Applied Power Electronics Conf., 2011, pp. 11611165.
    27. 27)
      • 27. Kwon, O., Son, J., Kim, T., et al: ‘Implementation of a high efficiency SCALDO regulator using MOSFET’, J. Inst. Korean Electr. Electron. Eng., 2015, 19, (3), pp. 304310.
    28. 28)
      • 28. Kularatna, N., Wickramasinghe, T.: ‘Supercapacitor assisted low dropout regulators (SCALDO) with reduced switches: a new approach to high efficiency VRM designs’. Proc. IEEE Int. Symp. on Industrial Electronics, 2013, pp. 16.
    29. 29)
      • 29. Wickramasinghe, T.: ‘Supercapacitor-based linear converter for voltage regulator modules’. PhD thesis, The University of Waikato, New Zealand, 2016.
    30. 30)
      • 30. Subasinghage, K., Gunawardane, K., Lie, T., et al: ‘Design of an efficiency improved dual-output DC–DC converter utilizing a supercapacitor circulation technique’. Proc. IEEE Sothern Power Electronics Conf., 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0093
Loading

Related content

content/journals/10.1049/iet-pel.2017.0093
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address