access icon free Novel high step-up dual switches converter with reduced power device voltage stress for distributed generation system

This study introduces a new dual switches converter with a high voltage gain and reduced power device voltage stress. Using a three-winding coupled inductor and voltage multiplier, the proposed converter achieves a high step-up voltage gain without a large duty cycle. However, unlike other converters with coupled inductor, the power device voltage stress in the proposed converter is dramatically reduced. The two clamped diodes not only alleviate the voltage spike across the metal–oxide–semiconductor field-effect transistor (MOSFET), but also reduce the diode reverse recovery issue. The efficiency can be improved as circuit allows the use of low on-resistance MOSFETs and Schottoky diodes in applications where this might not have been possible with conventional topologies. The basic operational principle and relevant theoretical analysis are presented in this study. Finally, practical results from a laboratory prototype are presented to verify the performance of the proposed converter.

Inspec keywords: switching convertors; MOSFET; power supply quality; Schottky diodes; field effect transistor switches; voltage multipliers; distributed power generation

Other keywords: high step-up dual switches converter; three-winding coupled inductor; metal oxide semiconductor field effect transistor; Schottoky diodes; diode reverse recovery issue reduction; MOSFET; distributed generation system; clamped diodes; voltage spike; voltage multiplier; reduced power device voltage stress

Subjects: Relays and switches; Insulated gate field effect transistors; Power convertors and power supplies to apparatus; Distributed power generation

References

    1. 1)
      • 10. Ismail, E.H., Al-Saffar, M.A., Sabzali, A.J., et al: ‘A family of single-switch PWM converters with high step-up conversion ratio’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (4), pp. 11591171.
    2. 2)
      • 24. Ruan, X.B., Li, B., Chen, Q.H.: ‘Three-level converters – a new approach for high voltage and high power DC-to-DC conversion’. Proc. Power Electronics Specialists Conf., 2002, vol. 2, pp. 663668.
    3. 3)
      • 18. Cid-Pastor, A., Martínez-Salame, L., Alonso, C., et al: ‘Power distribution based on gyrators’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 29072909.
    4. 4)
      • 6. Wai, R.J., Lin, C.Y., Duan, R.Y., et al: ‘High-efficiency dc–dc converter with high voltage gain and reduced switch stress’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 354364.
    5. 5)
      • 16. Hsieh, Y.P., Chen, J.F., Liang, T.J., et al: ‘Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques for a sustainable energy system’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 34813490.
    6. 6)
      • 20. Jiao, Y., Luo, F.L., Zhu, M.: ‘Voltage-lift-type switched-inductor cells for enhancing DC–DC boost ability: principles and integrations in Luo converter’, IET Trans. Power Electron., 2001, 4, (1), pp. 131142.
    7. 7)
      • 3. Liu, H.C., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49744983.
    8. 8)
      • 22. Li, W.H., He, X.N.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250.
    9. 9)
      • 5. Wai, R.J., Jheng, K.H.: ‘High-efficiency single-input multiple-output DC–DC converter’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 886898.
    10. 10)
      • 25. Zhao, Q., Lee, F.C.: ‘High-efficiency, high step-up DC–DC converters’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 6573.
    11. 11)
      • 2. Liu, H.C., Li, F.: ‘A novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 50305039.
    12. 12)
      • 21. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters’, IEEE Trans. Circuits Syst. I, 2008, 55, (2), pp. 687696.
    13. 13)
      • 19. Luo, F.L.: ‘Luo-converters, voltage lift technique’. Proc. IEEE Power Electronics Specialists Conf., 1998, vol. 2, pp. 17831789.
    14. 14)
      • 15. Hsieh, Y.P., Chen, J.F., Liang, T.J., et al: ‘Novel high step-up DC–DC converter for distributed generation system’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14731482.
    15. 15)
      • 7. Hu, X.F., Gong, C.Y.: ‘A high gain input-parallel output-series DC/DC converter with dual coupled inductors’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 789800.
    16. 16)
      • 8. Prudente, M., Pfitscher, L.L., Emmendoerfer, G., et al: ‘Voltage multiplier cells applied to non-isolated DC–DC converters’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 871887.
    17. 17)
      • 11. Changchien, S.K., Liang, T.J., Chen, J.F., et al: ‘Novel high step-up DC–DC converter for fuel cell energy conversion system’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20072017.
    18. 18)
      • 1. Siwakoti, Y.P., Loh, P.C., Blaabjerg, F., et al: ‘Y-source impedance network based boost DC/DC converter for distributed generation’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10591069.
    19. 19)
      • 23. Hu, X.F., Gong, C.Y.: ‘A high voltage gain DC–DC converter integrating coupled-inductor and diode–capacitor techniques’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 789800.
    20. 20)
      • 17. Chen, S.M., Liang, T.J., Yang, L.S., et al: ‘A boost converter with capacitor multiplier and coupled inductor for AC module applications’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 15031511.
    21. 21)
      • 12. Tseng, K.C., Lin, J.T., Huang, C.C.: ‘High step-up converter with three-winding coupled inductor for fuel cell energy source applications’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 574581.
    22. 22)
      • 14. Zhao, Y., Li, W.H., He, X.N.: ‘High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications’, IET Power Electron., 2011, 4, (8), pp. 851859.
    23. 23)
      • 4. Wai, R.J., Lin, C.Y., Duan, R.Y., et al: ‘High-efficiency DC–DC converter with high voltage gain and reduced switch stress’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 354364.
    24. 24)
      • 13. Li, W.H., Fan, L.L., Zhao, Y., et al: ‘High-step-up and high-efficiency fuel-cell power-generation system with active-clamp flyback–forward converter’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 599610.
    25. 25)
      • 9. Zhang, F., Du, L., Peng, F. Z., et al: ‘A new design method for high-power high-efficiency switched-capacitor DC–DC converters’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 832840.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0092
Loading

Related content

content/journals/10.1049/iet-pel.2017.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading