Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fully integrated high-efficiency high step-down ratio DC–DC buck converter with predictive over-current protection scheme

A high-efficiency fully integrated 36 V–3 A stepping down DC–DC converter with high step-down ratio and predictive over-current protection scheme is introduced. To achieve high-voltage conversion ratio, emulated current mode and dedicated current sensing circuits were involved. A novel predictive over-current scheme is proposed to overcome inherent lack of emulated current-mode control and provide fast response to over-current events. In addition, due to N-type field effect transistor (NFET) was adopted to improve efficiency, a floating rail regulator is presented to generate bootstrapped voltage for driver stage. The proposed converter was simulated and fabricated in 0.18 μm bipolar-complementary metal–oxide–semiconductor (MOS)-double-diffused MOS process. Experimental results show the features work well, and with 35 ns minimum on-time, this converter can convert up to 36 V input voltage to 1.8 V at 1 MHz switching frequency with single stage and compact solution. Measured peak efficiency is 89.5% and over 80% efficiency for 3 A output current is realised as well.

References

    1. 1)
      • 18. Shanov, P.S., Lazaro, O., Ramani, R., et al: ‘A 5 MHz, 12 V, 10 A, monolithically integrated two-phase series capacitor buck converter’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), March 2016, pp. 6672.
    2. 2)
      • 14. Lee, I.O., Cho, S.Y., Moon, G.W.: ‘Interleaved buck converter having low switching losses and improved step-down conversion ratio’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36643675.
    3. 3)
      • 22. Zhang, Y., Rodríguez, M., Maksimović, D.: ‘Very high frequency PWM buck converters using monolithic GaN half-bridge power stages with integrated gate drivers’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 79267942.
    4. 4)
      • 7. ‘Emulated current mode control for buck regulators using sample and hold technique’. Available at http://www.ti.com/litv/pdf/snva537, accessed October 2006.
    5. 5)
      • 15. Shanov, P.S., Amaro, M., Morroni, J., et al: ‘Comparison of a buck converter and a series capacitor buck converter for high frequency, high conversion ratio voltage regulators’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 70067015.
    6. 6)
      • 9. Wang, L.Y., Zhao, M.L., Wu, X.B., et al: ‘Predictive over-current protection scheme for step-down DC–DC converter with emulated current mode control’, IET Electron. Lett., 2016, 52, (15), pp. 13291330.
    7. 7)
      • 4. Yan, Y., Lee, F.C., Mattavelli, P.: ‘Dynamic performance comparison of current mode control schemes for point-of-load buck converter application’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), 2012, pp. 24842491.
    8. 8)
      • 1. Lee, F.C., Li, Q.: ‘High-frequency integrated point-of-load converters: overview’, IEEE Trans. Power Electron., 2013, 28, (9), pp. 41274136.
    9. 9)
      • 5. Wang, L.Y., Zhao, M.L., Wu, X.B.: ‘A monolithic high performance buck converter with enhanced current-mode control and advanced protection circuits’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 793805.
    10. 10)
      • 19. Ahsanuzzaman, S.M., Ma, Y., Pathan, A.A., et al: ‘A low-volume hybrid step-down dc–dc converter based on the dual use of flying capacitor’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), March 2016, pp. 24972503.
    11. 11)
      • 8. ‘Understanding output voltage limitations of DC/DC buck converters’. Available at http://www.ti.com/lit/an/slyt293/slyt293.pdf, accessed 2008.
    12. 12)
      • 6. Diaz-Saldierna, L.H., Leyva-Ramos, J., Ortiz-Lopez, M.G., et al: ‘Current-controlled switching regulator using a DC–DC converter with high-step-down voltage gain’, IET Power Electron., 2012, 5, (7), pp. 11471153.
    13. 13)
      • 13. Li, Y., Mao, X., Wang, H., et al: ‘An improved hiccup mode short-circuit protection technique with effective overshoot suppression for DC–DC converters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 877885.
    14. 14)
      • 23. Wittmann, J.: ‘Powering systems on chip for automotive and information/communications technology’. Presented at Forum: Integrated Voltage Regulators for SoC and Emerging IoT Systems, IEEE Int. Solid-State Circuits Conf. (ISSCC), 2 February 2017, pp. 500502.
    15. 15)
      • 12. Amato, M., Rumennik, V.: ‘Comparison of lateral and vertical DMOS specific on-resistance’. Proc. Int. Electron Devices Meeting, 1985, vol. 31, pp. 736739.
    16. 16)
      • 20. Kirshenboim, O., Peretz, M.: ‘High efficiency non-isolated converter with very-high step-down conversion ratio’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 36833690.
    17. 17)
      • 3. Yan, Y., Lee, F.C., Mattavelli, P.: ‘Comparison of small signal characteristics in current mode control schemes for point-of-load buck converter applications’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 34053414.
    18. 18)
      • 10. Erickson, R.W., Maksimović, D.: ‘Fundamentals of power electronics’ (Kluwer Press, 2001).
    19. 19)
      • 11. Forghani-zadeh, H.P., Rincon-Mora, G.A.: ‘Current-sensing techniques for DC–DC converters’. Proc. MWSCAS'02, 2002, vol. II, pp. 577580.
    20. 20)
      • 21. Ke, X., Sankman, J., Song, M.K., et al: ‘16.8 A 3-to-40 V 10-to-30 MHz automotive-use GaN driver with active BST balancing and VSW dual-edge dead-time modulation’. Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), February 2016, pp. 302304.
    21. 21)
      • 16. Jain, P., Prodić, A., Gerfer, A.: ‘Wide-input high power density flexible converter topology for dc–dc applications’. Proc. IEEE Applied Power Electronics Conf. Exposition (APEC), March 2016, pp. 25532560.
    22. 22)
      • 17. Wittmann, J., Barner, A., Rosahl, T., et al: ‘An 18 V input 10 MHz buck converter with 125 ps mixed-signal dead time control’, IEEE J. Solid-State Circuits, 2016, 51, (7), pp. 17051715.
    23. 23)
      • 2. Lee, F.C., Carter, R.A., Fang, Z.D.: ‘Investigations of stability & dynamic performances of a current-injected regulator’, IEEE Trans. Aerosp. Electron. Syst., 1983, AES-19, (2), pp. 274287.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0087
Loading

Related content

content/journals/10.1049/iet-pel.2017.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address