http://iet.metastore.ingenta.com
1887

Numerical modelling of PCB planar inductors: impact of 3D modelling on high-frequency copper loss evaluation

Numerical modelling of PCB planar inductors: impact of 3D modelling on high-frequency copper loss evaluation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Loss values are key parameters for designing high-performance high-frequency magnetic components for power electronics (PE) converters. With the increase of PE switching frequencies, copper losses have to be precisely quantified, ideally until some megahertz. In the literature, many 2D numerical simulations based on finite element analysis (FEA) are performed for such computations. 3D FEA studies of planar components are still limited because of modelling problems, computational resources and computing time. In this study, quantitative comparisons between 2D and 3D simulation results for planar inductors are achieved focusing on copper loss computation. Results are compared in terms of simulation performances and accuracy. The aim of the study is to highlight benefits of 2D and 3D FEA simulations in order to choose the appropriate model according to the studied problem.

References

    1. 1)
      • 1. Ouyang, Z., Andersen, M.A.E.: ‘Overview of planar magnetic technology — fundamental properties’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 48884900.
    2. 2)
      • 2. Quinn, C., Rinne, K., O'Donnell, T., et al: ‘A review of planar magnetic techniques and technologies’. Proc. Applied Power Electronics Conference and Exposition, APEC, Anaheim, CA, 2001, vol. 2, pp. 11751183.
    3. 3)
      • 3. Ngoua Teu Magambo, J.S., Bakri, R., Margueron, X., et al: ‘Planar magnetic components in more electric aircraft: review of technology and key parameters for DC-DC power electronic converter’, IEEE Trans. Transpor. Electrif., 2017, PP, (99), pp. 11.
    4. 4)
      • 4. Hurley, W.G., Wolfle, W.H.: ‘Transformers and inductors for power electronics: theory, design and applications’ (Wiley, 2013, 1st edn.).
    5. 5)
      • 5. Water, W., Lu, J.: ‘Improved high-frequency planar transformer for line level control (LLC) resonant converter’, IEEE Magn. Lett., 2013, 4, pp. 14.
    6. 6)
      • 6. Ibanez, F., Echeverria, J.M., Fontan, L.: ‘Novel technique for bidirectional series-resonant DC/DC converter in discontinuous mode’, IET Power Electron., 2013, 6, (5), pp. 10191028.
    7. 7)
      • 7. Am, S., Lefranc, P., Frey, D.: ‘Design methodology for optimising a high insulation voltage insulated gate bipolar transistor gate driver signal transmission function’, IET Power Electron., 2015, 8, (6), pp. 10351042.
    8. 8)
      • 8. Chen, R., Wyk, J.V., Wang, S., et al: ‘Improving the Characteristics of integrated EMI filters by embedded conductive Layers’, IEEE Trans. Power Electron., 2005, 20, (3), pp. 611619.
    9. 9)
      • 9. Tan, W., Margueron, X., Taylor, L., et al: ‘Leakage inductance analytical calculation for planar components with leakage layers’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 44624473.
    10. 10)
      • 10. Feng, B., Zhong-xia, N., Yu-Jie, S., et al: ‘EMI modeling and simulation of high voltage planar transformer’. Proc. Power Electronics, Drives and Energy Systems, PEDES, 2006, New Delhi, 12–15 December 2006.
    11. 11)
      • 11. Wang, Y.A., Xiao, D.M.: ‘Prototype design for a high-voltage high-frequency rectifier transformer for high power use’, IET Power Electron., 2011, 4, (6), pp. 615623.
    12. 12)
      • 12. Lefranc, P., Odic, E., Kirkpatrick, M.J.: ‘Optimisation and characterisation of a planar transformer with a high voltage ratio and high output voltage for plasma reactors’, IET Power Electron., 2015, 8, (6), pp. 929937.
    13. 13)
      • 13. Margueron, X., Besri, A., Lembeye, Y., et al: ‘Current sharing between parallel turns of a planar transformer: prediction and improvement using a circuit simulation software’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10641071.
    14. 14)
      • 14. Prieto, R., Oliver, J.A., Cobos, J.A., et al: ‘Magnetic component model for planar structures based on transmission lines’, IEEE Trans. Ind. Elect., 2010, 57, (5), pp. 16631669.
    15. 15)
      • 15. Chen, M., Araghchini, M., Afridi, K.K., et al: ‘A systematic approach to modeling impedances and current distribution in planar magnetics’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 560580.
    16. 16)
      • 16. Tria, L.A.R., Zhang, D., Fletcher, J.E.: ‘Implementation of a nonlinear planar magnetics model’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 65346542.
    17. 17)
      • 17. Dimitrakakis, G.S., Tatakis, E.C.: ‘High-frequency copper losses in magnetic components with layered windings’, IEEE Trans. Magn., 2009, 45, (8), pp. 31873199.
    18. 18)
      • 18. Reatti, A., Kazimierczuk, M.K.: ‘Comparison of various methods for calculating the AC resistance of inductors’, IEEE Trans. Magn., 2002, 38, (3), pp. 15121518.
    19. 19)
      • 19. Chen, W., Yan, Y., Hu, Y., et al: ‘Model and design of PCB parallel winding for planar transformer’, IEEE Trans. Magn., 2003, 39, (5), pp. 30023004.
    20. 20)
      • 20. Han, Y., Eberle, W., Liu, Y.-F.: ‘A practical copper loss measurement method for the planar transformer in high-frequency switching converters’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22762287.
    21. 21)
      • 21. Podoltsev, A.D., Kucheryavaya, I.N., Lebedev, B.B.: ‘Analysis of effective resistance and eddy-current losses in multiturn winding of high-frequency magnetic components’, IEEE Trans. Magn., 2003, 39, (1), pp. 539548.
    22. 22)
      • 22. Wang, N., O'Donnell, T., O'Mathuna, C.: ‘An improved calculation of copper losses in integrated power inductors on silicon’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 36413647.
    23. 23)
      • 23. Dowell, P.L.: ‘Effects of eddy currents in transformer windings’, Proc. Inst. Elect. Eng.,1966, 113, (8), pp. 13871394.
    24. 24)
      • 24. Aime, J., Cogitore, B., Meunier, G., et al: ‘Numerical methods for eddy currents modeling of planar transformers’, IEEE Trans. Magn., 2011, 47, (5), pp. 10141017.
    25. 25)
      • 25. Prieto, R., Cobos, J.A., Garcia, O., et al: ‘Study of 3-D magnetic components by means of ‘double 2-D’ methodology’, IEEE Trans. Ind. Electron., 2003, 50, (1), pp. 183192.
    26. 26)
      • 26. Ruehli, A.E.: ‘Equivalent circuit models for three-dimensional multiconductor systems’, IEEE Trans. Microw. Theory Tech., 1974, 22, (3), pp. 216221.
    27. 27)
      • 27. Ngoc, H.B., Chazal, H., Lembeye, Y., et al: ‘New PEEC formulation for modeling 2D core, transformer. Principles, academic and industrial applications’. Proc. APEC, Long Beach, CA, USA, 2013.
    28. 28)
      • 28. Kovacevic, I.F., Friedli, T., Musing, A.M., et al: ‘Full PEEC modeling of EMI filter inductors in the frequency domain, magnetics’, IEEE Trans. Magn., 2013, 49, (10), pp. 52485256.
    29. 29)
      • 29. Roßkopf, A., Bär, E., Joffe, C., et al: ‘Calculation of power losses in litz wire systems by coupling FEM and PEEC method’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 64426449.
    30. 30)
      • 30. Ferroxcube. Taipei, Taiwan: ‘Soft Ferrites and Accessories’. 2008September. Available at http://www.ferroxcube.com. ‘Soft Ferrites and Accessories Data Handbook 2013’. Available at http://www.ferroxcube.com/FerroxcubeCorporateReception/datasheet/, accessed June 2017.
    31. 31)
      • 31. Boucherot, P.: ‘Effet de peau’, Bull, S.I.E., 4, 1905.
    32. 32)
      • 32. Bossavit, A.: ‘Computational electromagnetism’ (Academic Press, Boston, 1998).
    33. 33)
      • 33. Ren, Z., Razek, A.: ‘Comparison of some 3D eddy current formulations in dual systems’, IEEE Trans. Magn., 2000, 36, (4), pp. 751755.
    34. 34)
      • 34. code_ Carmel3D’, http://code-carmel.univ-lille1.fr/, accessed June 2017.
    35. 35)
      • 35. Taylor, L., Henneron, T., Margueron, X., et al: ‘Model-order reduction of magneto-harmonic problems based on POD. Application to planar magnetic components’, Eur. Phys. J. Appl. Phys., 2016, 74, (1), p. 10903.
    36. 36)
      • 36. Cove, S.R., Ordonez, M., Shafiei, N., et al: ‘Improving wireless power transfer efficiency using hollow windings with track-width-ratio’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 65246533.
    37. 37)
      • 37. Koudra, F.: ‘Design of a driver for thyristors using a new extra flat planar transformer without magnetic circuit’, EPE J., 2009, 19, (2), pp. 1119.
    38. 38)
      • 38. Ho, G.K.Y., Zhang, C., Pong, B.M.H., et al: ‘Modeling and analysis of the bendable transformer’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 64506460.
    39. 39)
      • 39. Sepahvand, A., Zhang, Y., Maksimović, D.: ‘100 MHz isolated DC-DC resonant converter using spiral planar PCB transformer’. Proc. IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), Vancouver, BC, 2015, pp. 18.
    40. 40)
      • 40. ‘Agilent 4294A Precision Impedance Analyser-Operation Manual’, Agilent Technologies, Santa Clara, CA, USA, 2008.
    41. 41)
      • 41. Djuric, S., Stojanovic, G., Damnjanovic, M., et al: ‘Design, modeling, and analysis of a compact planar transformer’, IEEE Trans. Magn., 2012, 48, (11), pp. 41354138.
    42. 42)
      • 42. Ngoua Teu Magambo, J.S., Bakri, R., Margueron, X., et al: ‘Impact of PCB track shape on HF copper losses of planar magnetic components’. Proc. Int. Symp. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016, pp. 973978.
    43. 43)
      • 43. Keradec, J.P.: ‘Validating the power loss model of a transformer by measurement – validation is key’, IEEE Ind. Appl. Mag., 2007, 13, (4), pp. 4248.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0086
Loading

Related content

content/journals/10.1049/iet-pel.2017.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address