Time-domain characterisation of multicarrier-based digital SPWM of multilevel VSI

Time-domain characterisation of multicarrier-based digital SPWM of multilevel VSI

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effect of sampling frequency on digital sinusoidal pulse width modulated (SPWM) output of phase-shifted carrier-based multilevel voltage source inverter (VSI) and the characteristics of output voltage and load current has been discussed here. The generalised equation of digitally controlled phase-shifted carrier-based multilevel VSI output voltage is derived using double Fourier integral solution. The Jacobi–Anger expansion has been used to obtain the integral solution. Time-domain analysis has been used to establish the relation between sampling frequency, carrier frequency, and fundamental frequency, at different modulation indices for n-level VSI. The load current of VSI is stepped in nature due to stepped variation in the output of the digital SPWM. Therefore, the low-frequency harmonic components closer to the fundamental frequency appear in the frequency spectrum. The variation of total harmonic distortion with respect to multisampling factor (sampling to carrier frequency ratio) has been discussed at different modulation indices for multicarrier-based multilevel inverter. The analytical results are verified through simulation and laboratory experimental results.


    1. 1)
      • 1. Rodriguez, J., Franquelo, L.G., Kouro, S., et al: ‘Multilevel converters: an enabling technology for high-power applications’, IEEE Proc., 2009, 97, (11), pp. 17861817.
    2. 2)
      • 2. Holtz, J.: ‘Optimal PWM control of medium voltage drives – an overview’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 54725481.
    3. 3)
      • 3. Palanivel, P., Dash, S.S.: ‘Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques’, IET Power Electron., 2011, 4, (8), pp. 951958.
    4. 4)
      • 4. Lau, W.H., Zhou, B., Chung, H.S.H.: ‘Compact analytical solutions for determining the spectral characteristics of multicarrier-based multilevel PWM’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2004, 51, (8), pp. 15771585.
    5. 5)
      • 5. De, S., Banerjee, D., Siva Kumar, K., et al: ‘Multilevel inverters for low-power application’, IET Power Electron., 2011, 4, (4), pp. 384392.
    6. 6)
      • 6. Agamy, M.S., Jain, P.K.: ‘Performance comparison of single-stage three-level resonant AC/DC converter topologies’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 10231031.
    7. 7)
      • 7. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    8. 8)
      • 8. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters’ (IEEE Press, Piscataway, NJ, 2003).
    9. 9)
      • 9. Buccella, C., Cecati, C., Cimoroni, M.G., et al: ‘Analytical method for pattern generation in five-level cascaded H-bridge inverter using selective harmonic elimination’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 58115819.
    10. 10)
      • 10. Ding, K., Cheng, K.W.E., Zou, Y.P.: ‘Analysis of an asymmetric modulation method for cascaded multilevel inverters’, IET Power Electron., 2012, 5, (1), pp. 7485.
    11. 11)
      • 11. Kim, K.M., Choi, W.S., Park, K.H.: ‘Novel carrier-based hybrid pulse width modulation method for cascaded capacitor-clamp multilevel inverter’, IET Power Electron., 2014, 7, (10), pp. 26782686.
    12. 12)
      • 12. Li, Y., Wang, Y., Li, B.Q.: ‘Generalized theory of phase-shifted carrier PWM for cascaded H-bridge converters and modular multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 589605.
    13. 13)
      • 13. Lakka, M., Koutroulis, E., Dollas, A.: ‘Development of an FPGA-based SPWM generator for high switching frequency DC/AC inverters’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 356365.
    14. 14)
      • 14. Kumar, M., Gupta, R.: ‘Time-domain analysis of sampling effect in DPWM of DC–DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 69156924.
    15. 15)
      • 15. Pascual, C., Song, Z., Krein, P.T., et al: ‘High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP implementation, and results’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 473485.
    16. 16)
      • 16. Yang, S.H., Yang, Y.H., Chen, K.H., et al: ‘A low-THD class-D audio amplifier with dual-level dual-phase carrier pulsewidth modulation’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 71817190.
    17. 17)
      • 17. Gupta, R., Ghosh, A., Joshi, A.: ‘Switching characterization of cascaded multilevel-inverter-controlled systems’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10471058.
    18. 18)
      • 18. Gupta, R., Ghosh, A., Joshi, A.: ‘Characteristic analysis for multisampled digital implementation of fixed-switching-frequency closed-loop modulation of voltage-source inverter’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 23822392.
    19. 19)
      • 19. Colodro, F., Torralba, A.: ‘Spectral analysis of pulsewidth-modulated sampled signals’, IEEE Trans. Circuits Syst. II: Exp. Briefs, 2010, 57, (8), pp. 622626.
    20. 20)
      • 20. Kumar, M., Gupta, R.: ‘Sampling effect characterization of digital SPWM of VSI in time domain’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41504159.
    21. 21)
      • 21. Puyal, D., Barragan, L.A., Acero, J., et al: ‘An FPGA-based digital modulator for full- or half-bridge inverter control’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 14791483.
    22. 22)
      • 22. Selvamuthukumaran, R., Gupta, R.: ‘Rapid prototyping of power electronics converters for photovoltaic system application using Xilinx system generator’, IET Power Electron., 2014, 7, (9), pp. 22692278.
    23. 23)
      • 23. Monmasson, E., Cirstea, M.N.: ‘FPGA design methodology for industrial control systems – a review’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 18241842.
    24. 24)
      • 24. Kumar, M., Gupta, R.: ‘Sampled time domain analysis of digital pulse width modulation for feedback controlled converters’, IET Circuits, Devices Syst., 2016, 10, (6), pp. 481491.

Related content

This is a required field
Please enter a valid email address