http://iet.metastore.ingenta.com
1887

Time-domain characterisation of multicarrier-based digital SPWM of multilevel VSI

Time-domain characterisation of multicarrier-based digital SPWM of multilevel VSI

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effect of sampling frequency on digital sinusoidal pulse width modulated (SPWM) output of phase-shifted carrier-based multilevel voltage source inverter (VSI) and the characteristics of output voltage and load current has been discussed here. The generalised equation of digitally controlled phase-shifted carrier-based multilevel VSI output voltage is derived using double Fourier integral solution. The Jacobi–Anger expansion has been used to obtain the integral solution. Time-domain analysis has been used to establish the relation between sampling frequency, carrier frequency, and fundamental frequency, at different modulation indices for n-level VSI. The load current of VSI is stepped in nature due to stepped variation in the output of the digital SPWM. Therefore, the low-frequency harmonic components closer to the fundamental frequency appear in the frequency spectrum. The variation of total harmonic distortion with respect to multisampling factor (sampling to carrier frequency ratio) has been discussed at different modulation indices for multicarrier-based multilevel inverter. The analytical results are verified through simulation and laboratory experimental results.

References

    1. 1)
      • J. Rodriguez , L.G. Franquelo , S. Kouro .
        1. Rodriguez, J., Franquelo, L.G., Kouro, S., et al: ‘Multilevel converters: an enabling technology for high-power applications’, IEEE Proc., 2009, 97, (11), pp. 17861817.
        . IEEE Proc. , 11 , 1786 - 1817
    2. 2)
      • J. Holtz .
        2. Holtz, J.: ‘Optimal PWM control of medium voltage drives – an overview’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 54725481.
        . IEEE Trans. Ind. Electron. , 12 , 5472 - 5481
    3. 3)
      • P. Palanivel , S.S. Dash .
        3. Palanivel, P., Dash, S.S.: ‘Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques’, IET Power Electron., 2011, 4, (8), pp. 951958.
        . IET Power Electron. , 8 , 951 - 958
    4. 4)
      • W.H. Lau , B. Zhou , H.S.H. Chung .
        4. Lau, W.H., Zhou, B., Chung, H.S.H.: ‘Compact analytical solutions for determining the spectral characteristics of multicarrier-based multilevel PWM’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2004, 51, (8), pp. 15771585.
        . IEEE Trans. Circuits Syst. I, Reg. Papers , 8 , 1577 - 1585
    5. 5)
      • S. De , D. Banerjee , K. Siva Kumar .
        5. De, S., Banerjee, D., Siva Kumar, K., et al: ‘Multilevel inverters for low-power application’, IET Power Electron., 2011, 4, (4), pp. 384392.
        . IET Power Electron. , 4 , 384 - 392
    6. 6)
      • M.S. Agamy , P.K. Jain .
        6. Agamy, M.S., Jain, P.K.: ‘Performance comparison of single-stage three-level resonant AC/DC converter topologies’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 10231031.
        . IEEE Trans. Power Electron. , 4 , 1023 - 1031
    7. 7)
      • M. Malinowski , K. Gopakumar , J. Rodriguez .
        7. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
        . IEEE Trans. Ind. Electron. , 7 , 2197 - 2206
    8. 8)
      • D.G. Holmes , T.A. Lipo . (2003)
        8. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters’ (IEEE Press, Piscataway, NJ, 2003).
        .
    9. 9)
      • C. Buccella , C. Cecati , M.G. Cimoroni .
        9. Buccella, C., Cecati, C., Cimoroni, M.G., et al: ‘Analytical method for pattern generation in five-level cascaded H-bridge inverter using selective harmonic elimination’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 58115819.
        . IEEE Trans. Ind. Electron. , 11 , 5811 - 5819
    10. 10)
      • K. Ding , K.W.E. Cheng , Y.P. Zou .
        10. Ding, K., Cheng, K.W.E., Zou, Y.P.: ‘Analysis of an asymmetric modulation method for cascaded multilevel inverters’, IET Power Electron., 2012, 5, (1), pp. 7485.
        . IET Power Electron. , 1 , 74 - 85
    11. 11)
      • K.M. Kim , W.S. Choi , K.H. Park .
        11. Kim, K.M., Choi, W.S., Park, K.H.: ‘Novel carrier-based hybrid pulse width modulation method for cascaded capacitor-clamp multilevel inverter’, IET Power Electron., 2014, 7, (10), pp. 26782686.
        . IET Power Electron. , 10 , 2678 - 2686
    12. 12)
      • Y. Li , Y. Wang , B.Q. Li .
        12. Li, Y., Wang, Y., Li, B.Q.: ‘Generalized theory of phase-shifted carrier PWM for cascaded H-bridge converters and modular multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 589605.
        . IEEE J. Emerg. Sel. Top. Power Electron. , 2 , 589 - 605
    13. 13)
      • M. Lakka , E. Koutroulis , A. Dollas .
        13. Lakka, M., Koutroulis, E., Dollas, A.: ‘Development of an FPGA-based SPWM generator for high switching frequency DC/AC inverters’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 356365.
        . IEEE Trans. Power Electron. , 1 , 356 - 365
    14. 14)
      • M. Kumar , R. Gupta .
        14. Kumar, M., Gupta, R.: ‘Time-domain analysis of sampling effect in DPWM of DC–DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 69156924.
        . IEEE Trans. Ind. Electron. , 11 , 6915 - 6924
    15. 15)
      • C. Pascual , Z. Song , P.T. Krein .
        15. Pascual, C., Song, Z., Krein, P.T., et al: ‘High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP implementation, and results’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 473485.
        . IEEE Trans. Power Electron. , 1 , 473 - 485
    16. 16)
      • S.H. Yang , Y.H. Yang , K.H. Chen .
        16. Yang, S.H., Yang, Y.H., Chen, K.H., et al: ‘A low-THD class-D audio amplifier with dual-level dual-phase carrier pulsewidth modulation’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 71817190.
        . IEEE Trans. Ind. Electron. , 11 , 7181 - 7190
    17. 17)
      • R. Gupta , A. Ghosh , A. Joshi .
        17. Gupta, R., Ghosh, A., Joshi, A.: ‘Switching characterization of cascaded multilevel-inverter-controlled systems’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10471058.
        . IEEE Trans. Ind. Electron. , 3 , 1047 - 1058
    18. 18)
      • R. Gupta , A. Ghosh , A. Joshi .
        18. Gupta, R., Ghosh, A., Joshi, A.: ‘Characteristic analysis for multisampled digital implementation of fixed-switching-frequency closed-loop modulation of voltage-source inverter’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 23822392.
        . IEEE Trans. Ind. Electron. , 7 , 2382 - 2392
    19. 19)
      • F. Colodro , A. Torralba .
        19. Colodro, F., Torralba, A.: ‘Spectral analysis of pulsewidth-modulated sampled signals’, IEEE Trans. Circuits Syst. II: Exp. Briefs, 2010, 57, (8), pp. 622626.
        . IEEE Trans. Circuits Syst. II: Exp. Briefs , 8 , 622 - 626
    20. 20)
      • M. Kumar , R. Gupta .
        20. Kumar, M., Gupta, R.: ‘Sampling effect characterization of digital SPWM of VSI in time domain’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41504159.
        . IEEE Trans. Ind. Electron. , 7 , 4150 - 4159
    21. 21)
      • D. Puyal , L.A. Barragan , J. Acero .
        21. Puyal, D., Barragan, L.A., Acero, J., et al: ‘An FPGA-based digital modulator for full- or half-bridge inverter control’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 14791483.
        . IEEE Trans. Power Electron. , 5 , 1479 - 1483
    22. 22)
      • R. Selvamuthukumaran , R. Gupta .
        22. Selvamuthukumaran, R., Gupta, R.: ‘Rapid prototyping of power electronics converters for photovoltaic system application using Xilinx system generator’, IET Power Electron., 2014, 7, (9), pp. 22692278.
        . IET Power Electron. , 9 , 2269 - 2278
    23. 23)
      • E. Monmasson , M.N. Cirstea .
        23. Monmasson, E., Cirstea, M.N.: ‘FPGA design methodology for industrial control systems – a review’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 18241842.
        . IEEE Trans. Ind. Electron. , 4 , 1824 - 1842
    24. 24)
      • M. Kumar , R. Gupta .
        24. Kumar, M., Gupta, R.: ‘Sampled time domain analysis of digital pulse width modulation for feedback controlled converters’, IET Circuits, Devices Syst., 2016, 10, (6), pp. 481491.
        . IET Circuits, Devices Syst. , 6 , 481 - 491
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0078
Loading

Related content

content/journals/10.1049/iet-pel.2017.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address