access icon free High voltage gain dc–dc converters based on coupled inductors

In this study, two new high voltage gain dc–dc converters are proposed. In the proposed converters, two coupled inductors are used to increase and decrease the output voltage more than the traditional dc–dc converters in boost and buck operations, respectively. In these converters, by increasing the turns ratio of the coupled inductors, the voltage conversion ratio is increased for the whole range of duty cycles. The proposed topologies are analysed in all operating modes and the values of current stresses of all switches, voltage stresses on all switches, input current ripples and voltage gains are calculated for boost and buck operations. Finally, the accurate performance of the proposed converters is verified through experimental and Power System Computer Aided Design (PSCAD)/Electro Magnetic Transient Design and Control (EMTDC) simulation results.

Inspec keywords: DC-DC power convertors; power inductors; switchgear

Other keywords: input current ripple; boost converter; switch; voltage conversion ratio; coupled inductor; current stress; voltage stress; PSCAD-EMTDC simulation; voltage gain calculation; high voltage gain DC-DC converter; buck converter

Subjects: Switchgear; Transformers and reactors; DC-DC power convertors

References

    1. 1)
      • 15. Tseng, K.C., Chen, J.Z., Lin, J.T., et al: ‘High step-up interleaved forward-flyback boost converter with three-winding coupled inductors’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46964703.
    2. 2)
      • 16. Tseng, Ch., Lin, J.T., Huang, Ch.Ch.: ‘High step-up converter with three-winding coupled inductor for fuel cell energy source applications’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 574581.
    3. 3)
      • 17. Ardi, H., Ajami, A., Kardan, F., et al: ‘Analysis and implementation of a non-isolated bidirectional DC–DC converter with high voltage gain’, IEEE Trans. Power Electron., 2016, 63, (8), pp. 48784888.
    4. 4)
      • 6. Kim, J.K., Moon, G.W.: ‘Derivation, analysis, and comparison of non-isolated single-switch high step-up converters with low voltage stress’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 13361344.
    5. 5)
      • 7. Liu, H., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49744983.
    6. 6)
      • 14. Hu, X., Dai, G., Wang, L., et al: ‘A three-state switching boost converter mixed with magnetic coupling and voltage multiplier techniques for high gain conversion’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 29913001.
    7. 7)
      • 24. https://coefs.uncc.edu/.../Transformer-and-Inductor-Design-Handbook_Chapter_3.pdf.
    8. 8)
      • 1. Hsieh, Y.P., Chen, J.F., Yang, Sh.L., et al: ‘High-conversion-ratio bidirectional dc–dc converter with coupled inductor’, IEEE Trans. Power Electron., 2014, 61, (1), pp. 210222.
    9. 9)
      • 23. Czogalla, J., Li, J., Sullivan, C.R.: ‘Automotive application of multi-Phase coupled-inductor dc-dc converter’. Industry Applications Conf., Salt Lake City, USA, 2003.
    10. 10)
      • 9. Nouri, T., Babaei, E., Hosseini, S.H.: ‘A generalized ultra step-up dc–dc converter for high voltage application with design considerations’, Electr. Power Syst. Res., 2013, 105, pp. 7184.
    11. 11)
      • 4. Yao, C., Ruan, X., Wang, X., et al: ‘Isolated buck-boost dc/dc converters suitable for wide input-voltage range’, IEEE Trans. Power Electron., 2011, 26, (9), pp. 25992613.
    12. 12)
      • 13. Revathi, B.S., Prabhakar, M.: ‘Transformerless high-gain dc–dc converter for microgrids’, IET Power Electron., 2016, 9, (6), pp. 11701179.
    13. 13)
      • 10. Babaei, E., Saadatizadeh, Z., Mohammadi-ivatloo, B.: ‘A new interleaved bidirectional zero voltage switching dc/dc converter with high conversion ratio’, J. Circuits Syst. Comput., 2017, 26, (6), pp. 125.
    14. 14)
      • 8. Hsieh, Y.P., Chen, J.F., Liang, T.J., et al: ‘Novel high step-up dc–dc converter with coupled-inductor and switched-capacitor techniques’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 9981007.
    15. 15)
      • 19. Narasimharaju, B.L., Dubey, S.P., Singh, S.P.: ‘Design and analysis of coupled inductor bidirectional dc-dc convertor for high-voltage diversity applications’, IET Power Electron., 2012, 5, (7), pp. 9981007.
    16. 16)
      • 12. He, L., Liao, Y.: ‘An advanced current-auto-balance high-step-up converter with a multi-coupled inductor and voltage multiplier for a renewable power generation system’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 133143.
    17. 17)
      • 20. Das, P., Mousavi, S.A., Moschopoulos, G.: ‘Analysis and design of a non-isolated bidirectional ZVS-PWM dc–dc converter with coupled inductors’, IEEE Trans. Power Electron., 2010, 25, (10), pp. 26302641.
    18. 18)
      • 11. Nouri, T., Hosseini, S.H., Babaei, E., et al: ‘Interleaved high step-up dc–dc converter based on three-winding high-frequency coupled inductor and voltage multiplier cell’, IET Power Electron., 2015, 8, (2), pp. 175189.
    19. 19)
      • 3. Babaei, E., Saadatizadeh, Z., Laali, S.: ‘A new topology of bidirectional buck-boost dc/dc converter with capability of soft switching and input current ripple cancellation’, Ir. J. Electr. Electron. Eng., 2016, 12, (2), pp. 134146.
    20. 20)
      • 2. Babaei, E., Saadatizadeh, Z.: ‘A new interleaved bidirectional dc/dc converter with zero voltage switching and high voltage gain: analyses, design and simulation’, Int. J. Circuit Theory Appl., 2017, 45, (11), pp. 17731800.
    21. 21)
      • 5. Zhao, Y., Li, W., He, X.: ‘Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 120134.
    22. 22)
      • 21. Duan, R.Y., Lee, J.D.: ‘High-efficiency bidirectional DC–DC converter with coupled inductor’, IET Power Electron., 2012, 5, (1), pp. 115123.
    23. 23)
      • 18. Ardi, H., Ahrabi, R.R., Najafi Ravadanegh, S.: ‘Non-isolated bidirectional dc–dc converter analysis and implementation’, IEEE Trans. Power Electron., 2014, 7, (12), pp. 30333044.
    24. 24)
      • 22. Babaei, E., Saadatizadeh, Z., Cecati, C.: ‘High step-up high step-down bidirectional dc/dc converter’, IET Power Electron., 2017, 10, (12), pp. 15561571.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0051
Loading

Related content

content/journals/10.1049/iet-pel.2017.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading