http://iet.metastore.ingenta.com
1887

Model predictive stator current control of doubly fed induction generator during network unbalance

Model predictive stator current control of doubly fed induction generator during network unbalance

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a model predictive stator current control (MPSCC) strategy of doubly fed induction generator (DFIG) under unbalanced grid voltage conditions. Sinusoidal and balanced stator currents injected into the power grid can be ensured due to the direct control of stator currents rather than rotor currents. Model predictive control instead of traditional vector control is adopted, which can increase the current loop bandwidth and obtain faster dynamic responses. Conventional resonant regulators such as second-order generalised integrators or second-order vector integrators that are usually used to eliminate unbalanced components in stator currents can also be avoided. Moreover, both extractions of negative sequence components in rotor or stator currents and calculation of commanded rotor current are avoided, which simplifies the control scheme. The proposed MPSCC strategy can also implement the grid connection by introducing the virtual stator currents without any changes in the control scheme. Finally, experimental results based on a 1 kW lab DFIG system are provided to validate the effectiveness of the proposed control strategy.

References

    1. 1)
      • P. Li , Y.D. Song , D.Y. Li .
        1. Li, P., Song, Y.D., Li, D.Y., et al: ‘Control and monitoring for grid-friendly wind turbines: research overview and suggested approach’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 19791986.
        . IEEE Trans. Power Electron. , 4 , 1979 - 1986
    2. 2)
      • F. Blaabjerg , M. Liserre , K. Ma .
        2. Blaabjerg, F., Liserre, M., Ma, K.: ‘Power electronics converters for wind turbine systems’, IEEE Trans. Ind. Appl., 2012, 48, (2), pp. 708719.
        . IEEE Trans. Ind. Appl. , 2 , 708 - 719
    3. 3)
      • A. Tapia , G. Tapia , J.X. Ostolaza .
        3. Tapia, A., Tapia, G., Ostolaza, J.X., et al: ‘Modeling and control of a wind turbine driven doubly fed induction generator’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 194204.
        . IEEE Trans. Energy Convers. , 2 , 194 - 204
    4. 4)
      • R.W. Zhu , Z. Chen , Y. Tang .
        4. Zhu, R.W., Chen, Z., Tang, Y., et al: ‘Dual-loop control strategy for DFIG-based wind turbines under grid voltage disturbances’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 22392253.
        . IEEE Trans. Power Electron. , 3 , 2239 - 2253
    5. 5)
      • Y. Zhou , P. Bauer , J.A. Ferreira .
        5. Zhou, Y., Bauer, P., Ferreira, J.A., et al: ‘Operation of grid-connected DFIG under unbalanced grid voltage condition’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 240246.
        . IEEE Trans. Energy Convers. , 1 , 240 - 246
    6. 6)
      • L. Xu , Y. Wang .
        6. Xu, L., Wang, Y.: ‘Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 314323.
        . IEEE Trans. Power Syst. , 1 , 314 - 323
    7. 7)
      • J.B. Hu , Y.K. He .
        7. Hu, J.B., He, Y.K.: ‘Modeling and enhanced control of DFIG under unbalanced grid voltage conditions’, Electr. Power Syst. Res., 2009, 79, (2), pp. 273281.
        . Electr. Power Syst. Res. , 2 , 273 - 281
    8. 8)
      • H. Nian , P. Cheng , Z.Q. Zhu .
        8. Nian, H., Cheng, P., Zhu, Z.Q.: ‘Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 36503661.
        . IEEE Trans. Power Electron. , 7 , 3650 - 3661
    9. 9)
      • Y.P. Song , H. Nian .
        9. Song, Y.P., Nian, H.: ‘Modularized control strategy and performance analysis of DFIG system under unbalanced and harmonic grid voltage’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 48314842.
        . IEEE Trans. Power Electron. , 9 , 4831 - 4842
    10. 10)
      • P. Cheng , H. Nian .
        10. Cheng, P., Nian, H.: ‘Collaborative control of DFIG system during network unbalance using reduced-order generalized integrators’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 453464.
        . IEEE Trans. Energy Convers. , 2 , 453 - 464
    11. 11)
      • P. Cheng , H. Nian , C. Wu .
        11. Cheng, P., Nian, H., Wu, C., et al: ‘Direct stator current vector control strategy of DFIG without phase-locked loop during network unbalance’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 284297.
        . IEEE Trans. Power Electron. , 1 , 284 - 297
    12. 12)
      • H.A. Young , M.A. Perez , J. Rodriguez .
        12. Young, H.A., Perez, M.A., Rodriguez, J.: ‘Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 31003107.
        . IEEE Trans. Ind. Electron. , 5 , 3100 - 3107
    13. 13)
      • M. Siami , D.A. Khaburi , A. Abbaszadeh .
        13. Siami, M., Khaburi, D.A., Abbaszadeh, A., et al: ‘Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 34583466.
        . IEEE Trans. Ind. Electron. , 6 , 3458 - 3466
    14. 14)
      • P. Liu , Y. Wang , W.L. Cong .
        14. Liu, P., Wang, Y., Cong, W.L., et al: ‘Grouping-sorting-optimized model predictive control for modular multilevel converter with reduced computational load’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 18961907.
        . IEEE Trans. Power Electron. , 3 , 1896 - 1907
    15. 15)
      • L.L. Guo , X. Zhang , S. Yang .
        15. Guo, L.L., Zhang, X., Yang, S., et al: ‘A model predictive control-based common-mode voltage suppression strategy for voltage-source inverter’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 61156125.
        . IEEE Trans. Ind. Electron. , 10 , 6115 - 6125
    16. 16)
      • J.L. Elizondo , A. Olloqui , M. Rivera .
        16. Elizondo, J.L., Olloqui, A., Rivera, M., et al: ‘Model-based predictive rotor current control for grid synchronization of a DFIG driven by an indirect matrix converter’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (4), pp. 715726.
        . IEEE J. Emerg. Sel. Top. Power Electron. , 4 , 715 - 726
    17. 17)
      • D. Sun , X.H. Wang .
        17. Sun, D., Wang, X.H.: ‘Low-complexity model predictive direct power control for DFIG under both balanced and unbalanced grid conditions’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 51865196.
        . IEEE Trans. Ind. Electron. , 8 , 5186 - 5196
    18. 18)
      • J.F. Hu , J.G. Zhu , D.G. Dorrell .
        18. Hu, J.F., Zhu, J.G., Dorrell, D.G.: ‘Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 943950.
        . IEEE Trans. Sustain. Energy , 3 , 943 - 950
    19. 19)
      • (2016)
        19. Standard NB/T 31078-2016: ‘Evaluation method for grid code compliance of wind farms’, 2016.
        .
    20. 20)
      • H.L. Xu , J.B. Hu , Y.K. He .
        20. Xu, H.L., Hu, J.B., He, Y.K.: ‘Operation of wind-turbine-driven DFIG systems under distorted grid voltage conditions: analysis and experimental validations’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23542366.
        . IEEE Trans. Power Electron. , 5 , 2354 - 2366
    21. 21)
      • S. Golestan , M. Monfared , F.D. Freijedo .
        21. Golestan, S., Monfared, M., Freijedo, F.D.: ‘Design-oriented study of advanced synchronous reference frame phase-locked loops’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 765778.
        . IEEE Trans. Power Electron. , 2 , 765 - 778
    22. 22)
      • J. Arbi , M.J.-B. Ghorbal , I. Slama-Belkhodja .
        22. Arbi, J., Ghorbal, M.J.-B., Slama-Belkhodja, I., et al: ‘Direct virtual torque control for doubly fed induction generator grid connection’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 41634173.
        . IEEE Trans. Ind. Electron. , 10 , 4163 - 4173
    23. 23)
      • M.H. Shin , D.S. Hyun , S.B. Cho .
        23. Shin, M.H., Hyun, D.S., Cho, S.B., et al: ‘An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors’, IEEE Trans. Power Electron., 2000, 15, (2), pp. 312318.
        . IEEE Trans. Power Electron. , 2 , 312 - 318
    24. 24)
      • X.H. Wang , D. Sun .
        24. Wang, X.H., Sun, D.: ‘Three-vector-based low-complexity model predictive direct power control strategy for doubly fed induction generators’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 773782.
        . IEEE Trans. Power Electron. , 1 , 773 - 782
    25. 25)
      • (2008)
        25. GB/T 15543–2008: ‘Power quality – three-phase voltage unbalance’, 2008.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0049
Loading

Related content

content/journals/10.1049/iet-pel.2017.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address