http://iet.metastore.ingenta.com
1887

Robust and fast sliding-mode control for a DC–DC current-source parallel-resonant converter

Robust and fast sliding-mode control for a DC–DC current-source parallel-resonant converter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modern DC–DC resonant converters are normally built around a voltage-source series-resonant converter. This study aims to facilitate the practical use of current-source parallel-resonant converters due to their outstanding properties. To this end, this study presents a sliding-mode control scheme, which provides the following features to the closed-loop system: (i) high robustness to external disturbances and parameter variations and (ii) fast transient response during large and abrupt load changes. In addition, a design procedure for determining the values of the control parameters is presented. The theoretical contributions of this study are experimentally validated by selected tests on a laboratory prototype.

References

    1. 1)
      • 1. Thenathayalan, D., Lee, C.G., Park, J. H.: ‘High-order resonant converter topology with extremely low-coupling contactless transformers’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 23472361.
    2. 2)
      • 2. Tan, X., Ruan, X.: ‘Equivalence relations of resonant tanks: a new perspective for selection and design of resonant converters’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 21112123.
    3. 3)
      • 3. Lee, S.H., Cho, Y.W., Cha, W.J., et al: ‘High efficient series resonant converter using direct power conversion’, IET Power Electron., 2014, 7, (12), pp. 30453051.
    4. 4)
      • 4. Zhang, X., Green, T.C., Junyent-Ferré, A.: ‘A new resonant modular multilevel step-down DC–DC converter with inherent-balancing’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 7888.
    5. 5)
      • 5. Lu, J., Perreault, D.J., Otten, D.M., et al: ‘Impedance control network resonant DC–DC converter for wide-range high-efficiency operation’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 50405056.
    6. 6)
      • 6. Lin, B.R., Cheng, P.J.: ‘New ZVS DC–DC converter with series-connected transformers to balance the output currents’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 246255.
    7. 7)
      • 7. Tang, Y., Khaligh, A.: ‘Bidirectional resonant DC–DC step-up converters for driving high-voltage actuators in mobile microrobots’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 340352.
    8. 8)
      • 8. Lee, I.O.: ‘Hybrid DC–DC converter with phase-shift or frequency modulation for NEV battery charger’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 884893.
    9. 9)
      • 9. Soeiro, T.B., Mühlethaler, J., Linnér, J.P., et al: ‘Automated design of a high-power high-frequency LCC resonant converter for electrostatic precipitators’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 48054819.
    10. 10)
      • 10. Martín-Ramos, J.A., Vaquero, Ó.P., Villegas, P.J., et al: ‘Multilevel PRC-LCC resonant converter for X-ray generation’, Electron. Lett., 2015, 51, (15), pp. 11891191.
    11. 11)
      • 11. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    12. 12)
      • 12. Chen, F.Y., Liang, T.J., Lin, R.L., et al: ‘A novel self-oscillating, boost-derived DC–DC converter with load regulation’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 6574.
    13. 13)
      • 13. Iqbal, S., Singh, G.K., Besar, R.: ‘A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 10031008.
    14. 14)
      • 14. Castilla, M., Garcia de Vicuña, L., Matas, J., et al: ‘A comparative study of sliding mode control schemes for quantum series resonant inverters’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 34873495.
    15. 15)
      • 15. Sosa, J.L., Castilla, M., Miret, J., et al: ‘Sliding-mode input-output linearization controller for the DC/DC ZVS CLL-T resonant converter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 15541564.
    16. 16)
      • 16. Sosa, J.L., Castilla, M., Miret, J., et al: ‘Modeling and performance analysis of the DC/DC series-parallel resonant converter operating with discrete self-sustained phase-shift modulation technique’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 697705.
    17. 17)
      • 17. Hu, A.P., Covic, G.A., Boys, J.T.: ‘Direct ZVS start-up of a current fed resonant inverter’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 809812.
    18. 18)
      • 18. Namadmalan, A., Moghani, J.S.: ‘Self-oscillating switching technique for current source parallel resonant induction heating systems’, J. Power Electron., 2012, 12, (6), pp. 851858.
    19. 19)
      • 19. Namadmalan, A., Moghani, J.S.: ‘Tunable self-oscillating switching technique for current source induction heating systems’, IEEE Trans. Power Electron., 2014, 61, (5), pp. 25562563.
    20. 20)
      • 20. Dai, X., Sun, Y.: ‘An accurate frequency tracking method based on short current detection for inductive power transfer system’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 776783.
    21. 21)
      • 21. Namadmalan, A.: ‘Bidirectional current fed resonant inverter for contactless energy transfer Systems’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 238245.
    22. 22)
      • 22. Sabanovic, A.: ‘Variable structure systems with sliding modes in motion control – a survey’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 212223.
    23. 23)
      • 23. Castilla, M., Garcia de Vicuña, L., Lopez, M., et al: ‘A sliding mode controller for the current-source parallel-resonant converter with zero-voltage switching’. Proc. IEEE IECON, 1997, New Orleans, LA, pp. 477482.
    24. 24)
      • 24. Haroun, R., Cid-Pastor, A., Aroudi, A.E., et al: ‘Synthesis of canonical elements for power processing in DC distribution systems using cascaded converters and sliding-mode control’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 13661381.
    25. 25)
      • 25. Slotine, J.J., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0033
Loading

Related content

content/journals/10.1049/iet-pel.2017.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address