access icon free Robust and fast sliding-mode control for a DC–DC current-source parallel-resonant converter

Modern DC–DC resonant converters are normally built around a voltage-source series-resonant converter. This study aims to facilitate the practical use of current-source parallel-resonant converters due to their outstanding properties. To this end, this study presents a sliding-mode control scheme, which provides the following features to the closed-loop system: (i) high robustness to external disturbances and parameter variations and (ii) fast transient response during large and abrupt load changes. In addition, a design procedure for determining the values of the control parameters is presented. The theoretical contributions of this study are experimentally validated by selected tests on a laboratory prototype.

Inspec keywords: variable structure systems; voltage-source convertors; closed loop systems; resonant power convertors; DC-DC power convertors; robust control

Other keywords: closed-loop system; robust sliding-mode control; DC–DC current-source parallel-resonant converter; external disturbances; fast sliding-mode control; fast transient response; abrupt load changes; control parameters determination; parameter variations

Subjects: Stability in control theory; Multivariable control systems; Control of electric power systems; DC-DC power convertors

References

    1. 1)
      • 18. Namadmalan, A., Moghani, J.S.: ‘Self-oscillating switching technique for current source parallel resonant induction heating systems’, J. Power Electron., 2012, 12, (6), pp. 851858.
    2. 2)
      • 22. Sabanovic, A.: ‘Variable structure systems with sliding modes in motion control – a survey’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 212223.
    3. 3)
      • 19. Namadmalan, A., Moghani, J.S.: ‘Tunable self-oscillating switching technique for current source induction heating systems’, IEEE Trans. Power Electron., 2014, 61, (5), pp. 25562563.
    4. 4)
      • 16. Sosa, J.L., Castilla, M., Miret, J., et al: ‘Modeling and performance analysis of the DC/DC series-parallel resonant converter operating with discrete self-sustained phase-shift modulation technique’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 697705.
    5. 5)
      • 17. Hu, A.P., Covic, G.A., Boys, J.T.: ‘Direct ZVS start-up of a current fed resonant inverter’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 809812.
    6. 6)
      • 3. Lee, S.H., Cho, Y.W., Cha, W.J., et al: ‘High efficient series resonant converter using direct power conversion’, IET Power Electron., 2014, 7, (12), pp. 30453051.
    7. 7)
      • 23. Castilla, M., Garcia de Vicuña, L., Lopez, M., et al: ‘A sliding mode controller for the current-source parallel-resonant converter with zero-voltage switching’. Proc. IEEE IECON, 1997, New Orleans, LA, pp. 477482.
    8. 8)
      • 12. Chen, F.Y., Liang, T.J., Lin, R.L., et al: ‘A novel self-oscillating, boost-derived DC–DC converter with load regulation’, IEEE Trans. Power Electron., 2005, 20, (1), pp. 6574.
    9. 9)
      • 21. Namadmalan, A.: ‘Bidirectional current fed resonant inverter for contactless energy transfer Systems’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 238245.
    10. 10)
      • 10. Martín-Ramos, J.A., Vaquero, Ó.P., Villegas, P.J., et al: ‘Multilevel PRC-LCC resonant converter for X-ray generation’, Electron. Lett., 2015, 51, (15), pp. 11891191.
    11. 11)
      • 15. Sosa, J.L., Castilla, M., Miret, J., et al: ‘Sliding-mode input-output linearization controller for the DC/DC ZVS CLL-T resonant converter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 15541564.
    12. 12)
      • 4. Zhang, X., Green, T.C., Junyent-Ferré, A.: ‘A new resonant modular multilevel step-down DC–DC converter with inherent-balancing’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 7888.
    13. 13)
      • 9. Soeiro, T.B., Mühlethaler, J., Linnér, J.P., et al: ‘Automated design of a high-power high-frequency LCC resonant converter for electrostatic precipitators’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 48054819.
    14. 14)
      • 7. Tang, Y., Khaligh, A.: ‘Bidirectional resonant DC–DC step-up converters for driving high-voltage actuators in mobile microrobots’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 340352.
    15. 15)
      • 13. Iqbal, S., Singh, G.K., Besar, R.: ‘A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 10031008.
    16. 16)
      • 14. Castilla, M., Garcia de Vicuña, L., Matas, J., et al: ‘A comparative study of sliding mode control schemes for quantum series resonant inverters’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 34873495.
    17. 17)
      • 2. Tan, X., Ruan, X.: ‘Equivalence relations of resonant tanks: a new perspective for selection and design of resonant converters’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 21112123.
    18. 18)
      • 20. Dai, X., Sun, Y.: ‘An accurate frequency tracking method based on short current detection for inductive power transfer system’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 776783.
    19. 19)
      • 6. Lin, B.R., Cheng, P.J.: ‘New ZVS DC–DC converter with series-connected transformers to balance the output currents’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 246255.
    20. 20)
      • 5. Lu, J., Perreault, D.J., Otten, D.M., et al: ‘Impedance control network resonant DC–DC converter for wide-range high-efficiency operation’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 50405056.
    21. 21)
      • 8. Lee, I.O.: ‘Hybrid DC–DC converter with phase-shift or frequency modulation for NEV battery charger’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 884893.
    22. 22)
      • 25. Slotine, J.J., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    23. 23)
      • 1. Thenathayalan, D., Lee, C.G., Park, J. H.: ‘High-order resonant converter topology with extremely low-coupling contactless transformers’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 23472361.
    24. 24)
      • 11. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    25. 25)
      • 24. Haroun, R., Cid-Pastor, A., Aroudi, A.E., et al: ‘Synthesis of canonical elements for power processing in DC distribution systems using cascaded converters and sliding-mode control’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 13661381.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0033
Loading

Related content

content/journals/10.1049/iet-pel.2017.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading