http://iet.metastore.ingenta.com
1887

Dynamic behaviours of constant on-time one-cycle controlled boost converter

Dynamic behaviours of constant on-time one-cycle controlled boost converter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the discrete-time model is used to analyse a constant on-time one-cycle controlled boost converter operating in continuous conduction mode. Then, it derives the critical boundary between continuous conduction mode and discontinuous conduction mode. In terms of Newton–Raphson methodology, the numerical solutions of fixed points are obtained. Thereafter, the stability of closed-loop boost converter is analysed based on its Jacobian matrix. It remarks that a couple of conjugate multipliers of Jacobian matrix of the system cross the unit circle gradually with constant on-time value increasing, while the step-up power stage moves from period-1 state into Neimark–Sacker bifurcation. Based on the stability analysis, an additional current loop is developed to improve the control for extending the stable region. Finally, simulation and experimental results well validate the theoretical analysis.

References

    1. 1)
      • 1. Andersen, G.K., Blaabjerg, F.: ‘Current programmed control of a single-phase two-switch buck–boost power factor correction circuit’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 263271.
    2. 2)
      • 2. Sira-Ramirez, H., Silva-Ortigoza, R.: ‘Control design techniques in power electronics devices’ (Springer Science & Business Media, 2006).
    3. 3)
      • 3. Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F.: ‘Control in power electronics, selected problems’ (Academic Press, 2002).
    4. 4)
      • 4. Tsai, C., Lin, S.-M., Huang, C.-S.: ‘A fast-transient quasi-V2 switching buck regulator using AOT control with a load current correction (LCC) technique’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 39493957.
    5. 5)
      • 5. Suntio, T.: ‘Analysis and modeling of peak-current-mode-controlled buck converter in DICM’, IEEE Trans. Ind. Electron., 2001, 48, (1), pp. 127135.
    6. 6)
      • 6. Tsai, J.C., Chen, C.L., Lee, Y.H., et al: ‘Modified hysteretic current control (MHCC) for improving transient response of boost converter’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (8), pp. 19671979.
    7. 7)
      • 7. Smedley, K.M., Cuk, S.: ‘One-cycle control of switching converters’, IEEE Trans. Power Electron., 1995, 10, (6), pp. 625633.
    8. 8)
      • 8. Lai, Z., Smedley, K.M.: ‘A new extension of one-cycle control and its application to switching power amplifiers’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 96105.
    9. 9)
      • 9. Smedley, K.M., Cuk, S.: ‘Dynamics of one-cycle controlled Cuk converters’, IEEE Trans. Power Electron., 1995, 10, (6), pp. 634639.
    10. 10)
      • 10. Xie, Y., Ghaemi, R., Sun, J., et al: ‘Model predictive control for a full bridge DC/DC converter’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 164172.
    11. 11)
      • 11. Banerjee, S., Verghese, G.: ‘Nonlinear phenomena in power electronics: bifurcations, chaos, control, and applications’ (Wiley-IEEE Press, Hoboken NJ, 2001).
    12. 12)
      • 12. Bernardo, M.D., Tse, C.K.: ‘Chaos in power electronics: an overview’ (World Scientific, New York, 2002).
    13. 13)
      • 13. Tse, C.K., Li, M.: ‘Design-oriented bifurcation analysis of power electronics systems’, Int. J. Bifurcat. Chaos, 2011, 21, (6), pp. 15231538.
    14. 14)
      • 14. Ma, W., Wang, M., Li, C.: ‘Control of bifurcation in the one-cycle controlled Cuk converter’, Nonlinear Dynam., 2012, 67, (4), pp. 25732583.
    15. 15)
      • 15. Wang, F.Q., Zhang, H., Ma, X.K.: ‘Studied on low-frequency oscillation in the boost converter with one cycle control’, Acta Phys. Sin. Chin. Ed., 2008, 57, (3), pp. 15221528.
    16. 16)
      • 16. Femia, N., Petrone, G., Spagnolo, G., et al: ‘One-Cycle control of converters operating in DCM’. Proc. 2006 IEEE Int. Symp. Circuits Systems, 2006, pp. 839842.
    17. 17)
      • 17. Wang, J.P., Bao, B.C., Xu, J.P., et al: ‘Dynamical effects of equivalent series resistance of output capacitor in constant on-time controlled buck converter’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 17591768.
    18. 18)
      • 18. Wang, J.P., Xu, J.P., Bao, B.C.: ‘Analysis of pulse bursting phenomenon in constant-on-time-controlled buck converter’, IEEE Trans. Ind. Electron., 2011, 58, (12), pp. 54065410.
    19. 19)
      • 19. Santi, E., Cuk, S.: ‘Modeling of one-cycle controlled switching converters’. Fourteenth Int. Telecommunications Energy Conf. INTELEC'92, Washington DC, 1992, pp. 131138.
    20. 20)
      • 20. Hu, W., Zhang, F.Y., Long, X.L., et al: ‘Stability analysis and control of nonlinear behavior in V2 switching buck converter’, J. Power Electron., 2014, 14, (6), pp. 12081216.
    21. 21)
      • 21. Bernardo, M.D., Vasca, F.: ‘Discrete-time maps for the analysis of bifurcations and chaos in DC/DC converters’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (2), pp. 130143.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.1013
Loading

Related content

content/journals/10.1049/iet-pel.2016.1013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address