access icon free Analysis of a seven-level asymmetrical hybrid multilevel converter for traction systems

A medium-voltage high-power electric traction system, due to its non-linear nature results in serious power quality issues in power system such as low-power factor and high-harmonic distortion. To mitigate the aforementioned problems, this study presents a seven-level asymmetrical hybrid multilevel converter that can be implemented using a single dc source and two capacitors. The proposed converter is a series connection of a five-level cascaded module (CM) converter with an H-bridge cell to meet the demand of medium-voltage high-power traction applications with improved power factor at minimum harmonic distortion. A modulation scheme presented will operate an H-bridge cell and a CM with a fundamental frequency and high-frequency switching, respectively. The unbalancing of dc-link capacitors voltages due to active power transfer requires corrective control action including current control, voltage control and voltage balancing that has been proposed to keep the dc-link capacitor voltage balanced. Working principle of the proposed topology and its mathematical analysis is presented in this work. The effectiveness of the controlled pulse-width modulation strategy and stability of the proposed control method have been validated through simulation and experimental results.

Inspec keywords: power supply quality; electric current control; harmonic distortion; traction; power factor; voltage control; power convertors; capacitors

Other keywords: five-level cascaded module converter; high frequency switching; controlled pulse-width modulation strategy; low-power factor; capacitors; dc-link capacitors voltages; voltage balancing; current control; modulation scheme; single dc source; voltage control; medium-voltage high-power electric traction system; active power transfer; fundamental frequency; high-harmonic distortion; minimum harmonic distortion; H-bridge cell; mathematical analysis; power quality issues; seven-level asymmetrical hybrid multilevel converter; corrective control action

Subjects: Power convertors and power supplies to apparatus; Control of electric power systems; Current control; Transportation; Power electronics, supply and supervisory circuits; Voltage control

References

    1. 1)
      • 18. Morrison, R.E.: ‘Power quality issues on AC traction systems’, Proc. Int. Conf. Harmonics and Quality Power, ICHQP, 2000, 2, pp. 709714.
    2. 2)
      • 6. Wen, J., Ma Smedley, K.: ‘Synthesis of multilevel converters based on single- and/or three-phase converter building blocks’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 12471256.
    3. 3)
      • 3. Rodríguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    4. 4)
      • 2. Flinders, F., Oghanna, W.: ‘Energy efficiency improvements to electric locomotives using PWM rectifier technology’, Int. Conf. Electric Railways a United Europe 1995, 1995, pp. 106110.
    5. 5)
      • 5. Chauhan, N., Jana, K.C.: ‘Cascaded multilevel inverter for underground traction drives’2012.
    6. 6)
      • 12. Gupta, R., Ghosh, A., Joshi, A.: ‘Switching characterization of cascaded multilevel-inverter-controlled systems’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10471058.
    7. 7)
      • 19. Miura, Y., Kokubo, S., Maekawa, D., et al: ‘Efficiency improvement of a gas engine cogeneration system by power factor control with an IGBT rectifier’, Fourth Power Conversion Conf. PCC-NAGOYA 2007 – Conf. Proc., 2007, pp. 534541.
    8. 8)
      • 21. Lin, B.-R., Lu, H.-H.: ‘New multilevel rectifier based on series connection of H-bridge cell’, IEE Proc., Electr. Power Appl., 2000, 147, p. 304.
    9. 9)
      • 15. Cecati, C., Dell'Aquila, A., Liserre, M., et al: ‘A passivity-based multilevel active rectifier with adaptive compensation for traction applications’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14041413.
    10. 10)
      • 24. Bianchi, N., Dai Pre, M.: ‘Active power filter control using neural network technologies’, IEE Proc., Electr. Power Appl., 2003, 150, (2), pp. 139145.
    11. 11)
      • 25. Lai, Y.-S., Shyu, F.-S.: ‘Topology for hybrid multilevel inverter’, IEE Proc., Electr. Power Appl., 2002, 149, (6), p. 449.
    12. 12)
      • 20. Thongprasri, P.: ‘Capacitor voltage balancing in dc link five-level full-bridge diode-clamped multilevel inverter’, 2016, 54, (January), pp. 7380.
    13. 13)
      • 1. Ranjan, S., Mishra, S.K.: ‘Analysis of asymmetrical cascaded multilevel inverter for traction systems’. 2013 Int. Conf. Energy Efficient Technologies Sustainability ICEETS 2013, 2013, pp. 708713.
    14. 14)
      • 23. Singh, B., Singh, B.N., Chandra, A., et al: ‘A review of three-phase improved power quality ac–dc converters’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 641660.
    15. 15)
      • 7. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    16. 16)
      • 10. Hammond: United States Patent US006166513A, 26 December 2000.
    17. 17)
      • 27. González, S.A., Valla, M.I., Christiansen, C.F.: ‘Analysis of a cascade asymmetric topology for multilevel converters’, IEEE Int. Symp. Industrial Electronics, Vigo, Spain, 2007, pp. 10271032.
    18. 18)
      • 8. González, M.A., Escalante, M.F., Salinas, F.: ‘Voltage balancing scheme for flying capacitor multilevel converters’, IET Power Electron., 2013, 6, (5), pp. 835842.
    19. 19)
      • 4. Nordvall, A.: ‘Multilevel inverter topology survey’, Master of science thesis, Electric Power Engineering Division of Electric Power Engineering Multilevel Inverter Topology Survey’2011, p. 78.
    20. 20)
      • 11. Aiello, M.F., et al: United States Patent US006236580B1, 22 May 2001.
    21. 21)
      • 17. Wiedemuth, P., Bontemps, S., Minibck, J.: ‘35 kW active rectifier with integrated power modules’, Int. PCIM Europe 2007 Conf., 2007.
    22. 22)
      • 26. Babaei, E., Kangarlu, M.F., Hosseinzadeh, M. A: ‘Asymmetrical multilevel converter topology with reduced number of components’, IET Power Electron., 2013, 6, (6), pp. 11881196.
    23. 23)
      • 30. Du, Z., Tolbert, L.M., Member, S., et al: ‘of a seven-level hybrid cascaded H-bridge multilevel inverter’, 2009, 24, (1), pp. 2533.
    24. 24)
      • 9. Aiello, M.F., et al: United States Patent US006301130B1, 9 October, 2001.
    25. 25)
      • 14. Dixon, J., Morán, L.: ‘High-level multistep inverter optimization using a minimum number of power transistors’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 330337.
    26. 26)
      • 22. Cecati, C., Dell'Aquila, A., Liserre, M., et al: ‘Design of H-bridge multilevel active rectifier for traction systems’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 15411550.
    27. 27)
      • 28. Aspalli, M.S., Wamanrao, A.: ‘Sinusoidal pulse width modulation (SPWM) with variable carrier synchronization for multilevel inverter controllers’, 2009 Int. Conf. Control Automation Communication and Energy Conservation, 2009, pp. 16, (Cm).
    28. 28)
      • 16. González, S.A., Valla, M.I., Christiansen, C.F.: ‘Five-level cascade asymmetric multilevel converter’, IET Power Electron., 2010, 3, (1), p. 120.
    29. 29)
      • 29. Bifaretti, S., Tarisciotti, L., Watson, A., et al: ‘Distributed commutations pulse-width modulation technique for high-power AC/DC multi-level converters’, IET Power Electron., 2012, 5, (6), pp. 909919.
    30. 30)
      • 13. Rech, C., Pinheiro, J.R.: ‘Hybrid multilevel converters: unified analysis and design considerations’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 10921104.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.1012
Loading

Related content

content/journals/10.1049/iet-pel.2016.1012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading