access icon free Micro-inverter based on single-ended primary-inductance converter topology with an active clamp power decoupling

The reliability and lifespan of micro-inverters are two significant features of AC-module photovoltaic systems. One of the most effective methods to enhance the reliability and life duration of micro-inverters is achieved by substituting their electrolytic power decoupling capacitor with the film capacitors. In this study, a new DC/AC inverter based on an isolated single-ended primary-inductance converter with an active clamp power decoupling is introduced. The proposed converter has no electrolytic capacitor which results in long lifetime and high reliability. Moreover, the inverter has simple structure and low number of semiconductor switches which improve the efficiency and make it cost effective. The sufficient stepping up ability for output voltage without increasing turns ratio excessively, non-pulsating input current, and appropriate isolation make the proposed micro-inverter a proper choice for grid-connected applications. The converter operating modes are discussed and design considerations are presented. Finally, experimental results of the implemented prototype validate aforementioned features and performance of the proposed micro-inverter.

Inspec keywords: power grids; invertors; DC-AC power convertors; power semiconductor switches

Other keywords: microinverter life duration; microinverter lifespan; isolated single-ended primary-inductance converter; microinverter reliability; film capacitors; grid-connected applications; semiconductor switches; active clamp power decoupling; AC-module photovoltaic systems; electrolytic power decoupling capacitor; DC-AC inverter; single-ended primary-inductance converter topology

Subjects: Relays and switches; Reliability; Power electronics, supply and supervisory circuits; Power semiconductor devices

References

    1. 1)
      • 16. Kyritsis, A.C., Tatakis, E., Papanikolaou, N.: ‘Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 281293.
    2. 2)
      • 19. Kjaer, S.B., Blaabjerg, F.: ‘Design optimization of a single phase inverter for photovoltaic applications’. 2003 IEEE 34th Annual Power Electronics Specialist Conf. 2003 PESC'03, 2003.
    3. 3)
      • 9. Chen, Y.-M., Chang, C.-H., Wu, H.-C.: ‘DC-link capacitor selections for the single-phase grid-connected PV system’. 2009 Int. Conf. Power Electronics and Drive Systems (PEDS), 2009.
    4. 4)
      • 3. Xue, Y., Chang, L., Kjaer, S.B., et al: ‘Topologies of single-phase inverters for small distributed power generators: an overview’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13051314.
    5. 5)
      • 25. Dezza, F.C., Diforte, M., Faranda, R.: ‘A solar converter for distributed generation able to improve the power quality supply’. 18th Int. Conf. and Exhibition on Electricity Distribution, 2005 CIRED 2005, 2005.
    6. 6)
      • 4. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306.
    7. 7)
      • 18. Shimizu, T., Wada, K., Nakamura, N.: ‘Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 12641272.
    8. 8)
      • 1. Manickam, C., Raman, G.P., Raman, G.R., et al: ‘Efficient global maximum power point tracking technique for a partially shaded photovoltaic string’, IET Power Electron., 2016, 9, (14), pp. 26372644.
    9. 9)
      • 15. Kasa, N., Iida, T., Chen, L.: ‘Flyback inverter controlled by sensorless current MPPT for photovoltaic power system’, IEEE Trans. Ind. Electron., 2005, 52, (4), pp. 11451152.
    10. 10)
      • 10. Zhu, G., Ruan, X., Zhang, L., et al: ‘On the reduction of second harmonic current and improvement of dynamic response for two-stage single-phase inverter’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 10281041.
    11. 11)
      • 26. Lin, B.-R., Chen, C.-C.: ‘Soft switching isolated SEPIC converter with the buck–boost type of active clamp’. 2007 Second IEEE Conf. Industrial Electronics and Applications, 2007.
    12. 12)
      • 5. Harb, S., Balog, R.S.: ‘Reliability of candidate photovoltaic module-integrated-inverter topologies’. 2012 27th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012.
    13. 13)
      • 21. Hu, H., Harb, S., Fang, X., et al: ‘A three-port flyback for PV microinverter applications with power pulsation decoupling capability’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39533964.
    14. 14)
      • 11. Schonberger, J.: ‘A single phase multi-string PV inverter with minimal bus capacitance’. 13th European Conf. Power Electronics and Applications, 2009. EPE'09md2009.
    15. 15)
      • 23. Liao, C.-Y., Chen, Y.-M., Lin, W.-H.: ‘Forward-type micro-inverter with power decoupling’. 2013 28th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2013.
    16. 16)
      • 22. Tan, G., Wang, J., Ji, Y.: ‘Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications’, IET Electr. Power Appl., 2007, 1, (2), pp. 264274.
    17. 17)
      • 14. Kyritsis, A., Papanikolaou, N., Tatakis, E.: ‘A novel parallel active filter for current pulsation smoothing on single stage grid-connected Ac-PV modules’. 2007 European Conf. Power Electronics and Applications, 2007.
    18. 18)
      • 8. Hu, H., Harb, S., Kutkut, N., et al: ‘A review of power decoupling techniques for microinverters with three different decoupling capacitor locations in PV systems’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 27112726.
    19. 19)
      • 17. Li, Y., Oruganti, R.: ‘A flyback-CCM inverter scheme for photovoltaic ac module application’, Aust. J. Electr. Electron. Eng., 2009, 6, (3), pp. 301309.
    20. 20)
      • 13. Bush, C.R., Wang, B.: ‘A single-phase current source solar inverter with reduced-size dc link’. 2009 IEEE Energy Conversion Congress and Exposition, 2009.
    21. 21)
      • 20. Harb, S., Hu, H., Kutkut, N., et al: ‘A three-port photovoltaic (PV) micro-inverter with power decoupling capability’. 2011 26th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2011.
    22. 22)
      • 2. Li, Q., Wolfs, P.: ‘A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 13201333.
    23. 23)
      • 27. Ongaro, F., Saggini, S.: ‘ZVS isolated active clamp SEPIC converter for high power led applications’. 2012 27th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012.
    24. 24)
      • 7. Edwin, F., Xiao, W., Khadkikar, V.: ‘Topology review of single phase grid-connected module integrated converters for PV applications’. IECON 2012 38th Annual Conf. IEEE Industrial Electronics Society, 2012.
    25. 25)
      • 24. Adhikari, N., Singh, B., Vyas, A.: ‘Performance evaluation of a low power solar-PV energy system with SEPIC converter’. 2011 IEEE Ninth Int. Conf. Power Electronics and Drive Systems (PEDS)2011.
    26. 26)
      • 6. Arshadi, S.A., Poorali, B., Adib, E., et al: ‘High step-up dc–ac inverter suitable for ac module applications’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 832839.
    27. 27)
      • 12. Sukesh, N., Pahlevaninezhad, M., Jain, P.K.: ‘Analysis and implementation of a single-stage flyback PV microinverter with soft switching’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 18191833.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0988
Loading

Related content

content/journals/10.1049/iet-pel.2016.0988
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading