http://iet.metastore.ingenta.com
1887

Improved control algorithm for grid-connected cascaded H-bridge photovoltaic inverters under asymmetric operating conditions

Improved control algorithm for grid-connected cascaded H-bridge photovoltaic inverters under asymmetric operating conditions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, a single-stage cascaded H-bridge (CHB) inverter is presented for grid-connected photovoltaic (PV) systems. The CHB inverter has separate DC links and allows individual control of PV arrays. The conversion efficiency is high and the harmonic generation is lower than conventional PV inverters. Although the CHB inverter is a good candidate for injection of solar power into grid, its control issues have not been completely solved. One of the main challenges in the CHB inverter is the harmonic generation when the connected PV arrays to the H-bridge cells have different amounts of insolation. This study deals with the asymmetrical operating conditions of PV arrays (or H-bridge cells) in the CHB inverter and presents an analytical equation for determination of cells’ modulation indices based on PV arrays data. Then, a control loop is added to the tracking algorithm of conventional control systems to determine whether an H-bridge cell is in the linear modulation or not. In the case of overmodulation, the corresponding DC link voltage is increased by the controller to bring it back to the linear region. The validity of new method is confirmed by simulations and experiments on a seven-level 1.7 kW CHB inverter.

References

    1. 1)
      • 1. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    2. 2)
      • 2. Bedram, A., Davoudi, A., Balog, R.S.: ‘Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays’, IEEE J. Photovolt., 2012, 2, (4), pp. 532546.
    3. 3)
      • 3. Hajizadeh, M., Fathi, S.H.: ‘Fundamental frequency switching strategy for grid-connected cascaded H-bridge multilevel inverter to mitigate voltage harmonics at the point of common coupling’, IET Power Electron., 2016, 9, (12), pp. 23872393.
    4. 4)
      • 4. Kouro, S., Leon, J.I., Vinnikov, D., et al: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    5. 5)
      • 5. Oliveira, F.M., Oliveira da Silva, S.A., Durand, F.R., et al: ‘Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning’, IET Power Electron., 2015, 9, (6), pp. 11801191.
    6. 6)
      • 6. Villanueva, E., Correa, P., Rodriguez, J., et al: ‘Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 43994406.
    7. 7)
      • 7. Cecati, C., Ciancetta, F., Siano, P.: ‘A multilevel inverter for photovoltaic systems with fuzzy logic control’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41154125.
    8. 8)
      • 8. Kouro, S., Wu, B., Moya, A.,, et al: ‘Control of a cascaded H-bridge multilevel converter for grid connection of photovoltaic systems’. 35th Annual Conf. on Industrial Electronics (IECON ‘09), 2009, pp. 39763982.
    9. 9)
      • 9. Xiao, B., Hang, L., Mei, J.,, et al: ‘Modular cascaded H-bridge multilevel PV inverter with distributed MPPT for grid-connected applications’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 17221731.
    10. 10)
      • 10. Kumar, N., Saha, T.K., Dey, J.: ‘Sliding-mode control of PWM dual inverter-based grid-connected PV system: modeling and performance analysis’, IEEE J. Emerg. Sel. Topics Power Electron., 2016, 4, (2), pp. 435444.
    11. 11)
      • 11. Farivar, G., Hredzak, B., Agelidis, V.: ‘A dc-side sensorless cascaded H-bridge multilevel converter based photovoltaic system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 42334241.
    12. 12)
      • 12. Chavarria, J., Biel, D., Guinjoan, F.,, et al: ‘Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 98111.
    13. 13)
      • 13. Cortes, P., Kouro, S., Barrios, F.,, et al: ‘Predictive control of a single-phase cascaded H-bridge photovoltaic energy conversion system’. 7th Int. Power Electronics and Motion Control Conf. (IPEMC), 2012, pp. 14231428.
    14. 14)
      • 14. Rezaei, M., Iman-Eini, H., Farhangi, S.: ‘Grid-connected photovoltaic system based on a cascaded H-bridge inverter’, J. Power Electron., 2012, 12, (4), pp. 578586.
    15. 15)
      • 15. Eskandari, A., Javadian, V., Iman-Eini, H.,, et al: ‘Stable operation of grid connected cascaded H-bridge inverter under unbalanced insolation conditions’. 3rd Int. Conf. on Electric Power and Energy Conversion Systems, 2013, pp. 16.
    16. 16)
      • 16. Iman-Eini, H., Amini, M., Farhangi, Sh.: ‘Improving the performance of grid-connected cascaded H-bridge photovoltaic inverters under asymmetric insolation conditions’, Iranian J. Electr. Comput. Eng., in Persian language, 2015, 13, (2), pp. 135142.
    17. 17)
      • 17. Miranbeigi, M., Iman-Eini, H.: ‘Hybrid modulation technique for grid-connected cascaded photovoltaic systems’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 78437853.
    18. 18)
      • 18. Liu, L., Li, H., Xue, Y.,, et al: ‘Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 188202.
    19. 19)
      • 19. Liu, L., Li, H., Xue, Y.,, et al: ‘Decoupled active and reactive power control for large scale grid-connected photovoltaic systems using cascaded modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 176187.
    20. 20)
      • 20. Bacha, S., Picault, D., Burger, B.,, et al: ‘Photovoltaics in microgrids: an overview of grid integration and energy management aspects’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 3346.
    21. 21)
      • 21. Malinowski, M., Gopakumar, K., Rodriguez, J.,, et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    22. 22)
      • 22. Yang, Y., Zhou, K., Blaabjerg, F.: ‘Current harmonics from single-phase grid-connected inverters, examination and suppression’, IEEE J. Emerg. Sel. Topics Power Electron., 2016, 4, (1), pp. 221233.
    23. 23)
      • 23. Zhou, K., Wang, D.: ‘Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 186196.
    24. 24)
      • 24. Hussein, K.H., Muta, I., Hoshino, T.,, et al: ‘Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions’, IEE Proc. Gener. Transm. Distrib., 1995, 14, (1), pp. 5964.
    25. 25)
      • 25. Eha, H., Vu, T.K., Kim, J.E.: ‘Design and control of proportional- resonant controller based on photovoltaic power conditioning system’. IEEE Energy Conversion Congress and Exposition, 2009, pp. 21982205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0983
Loading

Related content

content/journals/10.1049/iet-pel.2016.0983
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address