Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation

Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The model predictive control (MPC) is a promising control method for cascaded H-bridge (CHB) rectifiers. One well-known MPC method is the finite-control-set MPC (FCS-MPC). However, three main issues arise in FCS-MPC: heavy computational burden, low steady-state performance, and time-consuming tuning work of weighting factor. Here, an alternative MPC method, deadbeat (DB) control with a capability of voltage balance, has been proposed for a single-phase CHB rectifier. The proposed method is based on the DB solution to obtain zero current error at the sampling instant and the use of a redundancy-based modulation strategy for voltage balance, leading to the ease of controller design and elimination of tuning work. The proposed method has been evaluated against FCS-MPC method on a single-phase three-cell CHB rectifier. The experimental results show that a reduced computational burden, an improved steady-state performance, and a comparable dynamic response can be achieved in the proposed method in comparison with FCS-MPC method.


    1. 1)
      • 1. S.-Ruiz, A., Mazuela, M., Alvarez, S., et al: ‘Medium voltage–high power converter topologies comparison procedure, for a 6.6 kV drive application using 4.5 kV IGBT modules’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14621476.
    2. 2)
      • 2. Aguilera, R.P., Acuna, P., Yu, Y., et al: ‘Predictive control of cascaded H-bridge converters under unbalanced power generation’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 413.
    3. 3)
      • 3. Cecati, C., Aquila, A.D., Liserre, M., et al: ‘A passivity-based multilevel active rectifier with adaptive compensation for traction applications’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14041413.
    4. 4)
      • 4. Aquila, A.D., Liserre, M., Monopoli, V.G., et al: ‘Overview of pi-based solutions for the control of dc buses of a single-phase h-bridge multilevel active rectifier’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 857866.
    5. 5)
      • 5. Shi, J., Gou, W., Yuan, H., et al: ‘Research on voltage and power balance control for cascaded modular solid-state transformer’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11541166.
    6. 6)
      • 6. Zhao, T., Wang, G., Bhattacharya, S., et al: ‘Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15231532.
    7. 7)
      • 7. Yang, D., Wu, N., Ying, L., et al: ‘Natural frame control of single-phase cascaded h-bridge multilevel converter based on fictive-phases construction’, IEEE Trans. Ind. Electron., early access.
    8. 8)
      • 8. She, X., Huang, A.Q., Wang, G.: ‘3-dspace modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37783789.
    9. 9)
      • 9. Blahnik, V., Kosan, T., Peroutka, Z., et al: ‘Control of single-phase cascaded h-bridge active rectifier under unbalanced load’, IEEE Trans. Power Electron., early access.
    10. 10)
      • 10. Eini H, I.-, Schanen, J.-L., Farhangi, S., et al: ‘A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24282442.
    11. 11)
      • 11. Moeini, A., I.-Eini, H., Marzoughi, A.: ‘DC link voltage balancing approach for cascaded H-bridge active rectifier based on selective harmonic elimination-pulse width modulation’, IET Power Electron., 2015, 8, (4), pp. 583590.
    12. 12)
      • 12. Marzoughi, A., Imaneini, H.: ‘Optimal selective harmonic elimination for cascaded H-bridge-based multilevel rectifiers’, IET Power Electron., 2014, 7, (2), pp. 350356.
    13. 13)
      • 13. Moeini, A., Zhao, H., Wang, S.: ‘A current reference based selective harmonic current mitigation PWM technique to improve the performance of cascaded h-bridge multilevel active rectifiers’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 727737.
    14. 14)
      • 14. Karamanakos, P., Pavlou, K., Manias, S.: ‘An enumeration-based model predictive control strategy for the cascaded h-bridge multilevel rectifier’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 34803489.
    15. 15)
      • 15. Zanchetta, P., Gerry, D.B., Monopoli, V.G., et al: ‘Predictive current control for multilevel active rectifiers with reduced switching frequency’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 163172.
    16. 16)
      • 16. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 935947.
    17. 17)
      • 17. Holtz, J.: ‘Advanced PWM and predictive control – an overview’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38373844.
    18. 18)
      • 18. Rashwan, A., Sayed, M.A., Mobarak, Y.A., et al: ‘Predictive controller based on switching state grouping for a modular multilevel converter with reduced computational time’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 21892198.
    19. 19)
      • 19. Moon, J.-W., Gwon, J.-S., Park, J.-W., et al: ‘Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system’, IEEE Trans. Ind. Deliv., 2015, 30, (2), pp. 608617.
    20. 20)
      • 20. Cortes, P., Wilson, A., Kouro, S., et al A.-Rub H.: ‘Model predictive control of multilevel cascaded h-bridge inverters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 26912699.
    21. 21)
      • 21. Perez, M.A., Cortes, P., Rodriguez, J.: ‘Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43544361.
    22. 22)
      • 22. Baidya, R., Aguilera, R.P., Acuna, P., et al: ‘Multistep model predictive control for cascaded H-bridge inverters: formulation and analysis’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 876886.
    23. 23)
      • 23. Wang, Y., Wang, X., Xie, W., et al: ‘Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35373547.
    24. 24)
      • 24. Vafaie, M.H., Dehkordi, B.M., Moallem, P., et al: ‘Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 29642975.
    25. 25)
      • 25. Kwak, S., Kim, S.-E., Park, J.-C.: ‘Predictive current control methods with reduced current errors and ripples for single-phase voltage source inverters’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 10061016.

Related content

This is a required field
Please enter a valid email address