access icon openaccess Comparison of digital PWM control strategies for high-power interleaved DC–DC converters

Three pulse-width-modulation (PWM) digital control approaches are evaluated to provide the current sharing between phases in high-power dual-interleaved DC–DC converters. The implementation of a digital peak current, multi-sample averaged current and an enhanced single-sample averaged current control in a TMS320F28377D is described. A summary of stability requirements is provided for designing the controllers and experimental results from a 60 kW, 75 kHz silicon carbide DC–DC converter are used to evaluate the steady-state and dynamic performance of the three control methods. Overall the best performance in terms of tracking and speed of response was achieved by the enhanced single-sample method. The multi-sampled technique provided the highest tracking accuracy, but at the expense of the slowest dynamic response. The fastest dynamic response was achieved by the digital peak current control, but this method is limited by poor noise immunity and instability for duty ratios in the region of 0.5.

Inspec keywords: DC-DC power convertors; electric current control; microcontrollers; digital control; power engineering computing; PWM power convertors; control engineering computing

Other keywords: high-power dual-interleaved DC-DC converters; dynamic response; digital PWM control strategies; current sharing; enhanced single-sample method; TMS320F28377D; digital pulse-width-modulation control strategies; enhanced single-sample averaged current control; duty ratios; multisample averaged current; silicon carbide DC-DC converter; multisampled technique; digital peak current control; stability requirements

Subjects: DC-DC power convertors; Power engineering computing; Control of electric power systems; Control engineering computing; Current control; Microprocessors and microcomputers; Microprocessor chips

References

    1. 1)
      • 5. Jingquan, C., Prodic, A., Erickson, R.W., et al: ‘Predictive digital current programmed control’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 411419.
    2. 2)
      • 19. Forsyth, A.J., Calderon-Lopez, G.: ‘Sampled-Data analysis of the dual-interleaved boost converter with interphase transformer’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 13381346.
    3. 3)
      • 14. Wu, H., Pickert, V., Giaouris, D., et al: ‘Nonlinear analysis and control of interleaved boost converter using real-time cycle to cycle variable slope compensation’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 72567270.
    4. 4)
      • 22. Peng, H., Prodic, A., Alarcon, E., et al: ‘Modeling of quantization effects in digitally controlled DC–DC converters’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 208215.
    5. 5)
      • 20. Texas Instruments.: ‘TMS320F2837xD Dual-Core Delfino Microcontrollers. Technical Reference Manual’, TMS320F2837xD Dual-Core Delfino Microcontrollers, 2016.
    6. 6)
      • 21. Peterchev, A.V., Sanders, S.R.: ‘Quantization resolution and limit cycling in digitally controlled PWM converters’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 301308.
    7. 7)
      • 10. Corradini, L., Mattavelli, P.: ‘Modeling of multisampled pulse width modulators for digitally controlled DC–DC converters’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 18391847.
    8. 8)
      • 23. Stefanutti, W., Mattavelli, P., Saggini, S., et al: ‘Energy-based approach for predicting limit cycle oscillations in voltage-mode digitally-controlled dc–dc converters’. Proc. Twenty-First Annual IEEE Applied Power Electronics Conf. and Exposition, APEC, 2006, pp. 17.
    9. 9)
      • 6. He, S., Hung, J.Y., Nelms, R.M.: ‘A digital predictive current mode controller using average inductor current’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 10921098.
    10. 10)
      • 17. Texas-Instruments.: ‘TMS320F2837xD Dual-Core Delfino Microcontrollers’, 2015.
    11. 11)
      • 9. Kumar, M., Gupta, R.: ‘Time-Domain analysis of sampling effect in DPWM of DC–DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 69156924.
    12. 12)
      • 2. Calderon-Lopez, G., Forsyth, A.J., Gordon, D.L., et al: ‘Evaluation of SiC BJTs for high-power DC–DC converters’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 24742481.
    13. 13)
      • 15. Barry, B.C., Hayes, J.G., Ryan, R.T., et al: ‘Small-signal model and control of the interleaved two-phase coupled-inductor boost converter’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 16.
    14. 14)
      • 1. Hegazy, O., Van Mierlo, J., Lataire, P.: ‘Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 44454458.
    15. 15)
      • 12. Hallworth, M., Shirsavar, S.A.: ‘Microcontroller-based peak current mode control using digital slope compensation’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 33403351.
    16. 16)
      • 11. Zhou, G., Xu, J., Jin, Y.: ‘Improved digital peak current predictive control for switching DC–DC converters’, IET Power Electron., 2011, 4, (2), pp. 227234.
    17. 17)
      • 18. Buso, S., Mattavelli, P.: ‘Digital control in power electronics’ (Morgan anc Claypool, 2006).
    18. 18)
      • 4. Bibian, S., Hua, J.: ‘Time delay compensation of digital control for DC switchmode power supplies using prediction techniques’, IEEE Trans. Power Electron., 2000, 15, (5), pp. 835842.
    19. 19)
      • 3. Calderon-Lopez, G., Forsyth, A.J.: ‘High power density DC–DC converter with SiC MOSFETs for electric vehicles’. 7th IET Int. Conf. on Proc. Power Electronics, Machines and Drives, PEMD, 2014, pp. 16.
    20. 20)
      • 16. Villarruel-Parra, A., Forsyth, A.J.: ‘Enhanced average-value modelling of interleaved DC–DC converters using sampler decomposition’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 22902299.
    21. 21)
      • 13. Taeed, F., Nymand, M.: ‘High-performance digital replica of analogue peak current mode control for DC–DC converter’, IET Power Electron., 2016, 9, (4), pp. 809816.
    22. 22)
      • 7. Ilic, M., Maksimovic, D.: ‘Digital average current-mode controller for DC–DC converters in physical vapor deposition applications’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 14281436.
    23. 23)
      • 8. Taeed, F., Nymand, M.: ‘A new simple and high performance digital peak current mode controller for DC–DC converters’. Proc. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2014, pp. 12131218.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0886
Loading

Related content

content/journals/10.1049/iet-pel.2016.0886
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading