http://iet.metastore.ingenta.com
1887

Analysis and optimisation of modulation strategy based on dual-phase-shift for modular multilevel high-frequency-link DC transformer in medium-voltage DC distribution network

Analysis and optimisation of modulation strategy based on dual-phase-shift for modular multilevel high-frequency-link DC transformer in medium-voltage DC distribution network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

DC/DC converters are crucial in DC distribution networks for converting voltage and interconnecting different voltage links. The modular multilevel high-frequency-link DC transformer (MDCT), which employs multiplex conversion principle and provides many advantages, realises voltage conversion, power transfer and electrical isolation between links in medium-voltage DC distribution networks. To improve the performance of MDCT, this study investigates the modulation with the phase-shift strategy and its influence on current stress, power characteristic and efficiency characteristic of MDCT. Besides, to simultaneously achieve an optimal solution for both current stress and efficiency characteristics of MDCT, an optimal modulation strategy based on dual-phase-shift is proposed. Finally, an MDCT prototype is constructed and experimental results verify the correctness and effectiveness of the analysis and proposed scheme.

References

    1. 1)
      • H.K. Liu , X. Xie , C. Zhang .
        1. Liu, H.K., Xie, X., Zhang, C., et al: ‘Quantitative SSR analysis of series-compensated DFIG-based wind farms using aggregated RLC circuit model’, IEEE Trans. Power Syst.2017, 32, (1), pp. 474483.
        . IEEE Trans. Power Syst. , 1 , 474 - 483
    2. 2)
      • M. Tabari , A. Yazdani .
        2. Tabari, M., Yazdani, A.: ‘Stability of a DC distribution system for power system integration of plug-in hybrid electric vehicles’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25642573.
        . IEEE Trans. Smart Grid , 5 , 2564 - 2573
    3. 3)
      • Y. Wang , Q. Song , Q. Sun .
        3. Wang, Y., Song, Q., Sun, Q., et al: ‘Multilevel MVDC link strategy of high-frequency-link DC transformer based on switched capacitor for MVDC power distribution’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 28292835.
        . IEEE Trans. Ind. Electron. , 4 , 2829 - 2835
    4. 4)
      • Y. Li , L. Luo , C. Rehtanz .
        4. Li, Y., Luo, L., Rehtanz, C., et al: ‘Harmonic transfer characteristics of a new HVDC system based on an inductive filtering method’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 22732283.
        . IEEE Trans. Power Electron. , 5 , 2273 - 2283
    5. 5)
      • B. Zhao , Q. Song , W. Liu .
        5. Zhao, B., Song, Q., Liu, W., et al: ‘Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power- conversion system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 40914106.
        . IEEE Trans. Power Electron. , 8 , 4091 - 4106
    6. 6)
      • R.P. Twiname , D.J. Thrimawithana , U.K. Madawala .
        6. Twiname, R.P., Thrimawithana, D.J., Madawala, U.K., et al: ‘A dual-active bridge topology with a tuned CLC network’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 65436550.
        . IEEE Trans. Power Electron. , 12 , 6543 - 6550
    7. 7)
      • Y. Xie , J. Sun , J. S. Freudenberg .
        7. Xie, Y., Sun, J., Freudenberg, J. S.: ‘Power flow characterization of a bidirectional galvanically isolated high-power DC–DC converter over a wide operating range’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 5466.
        . IEEE Trans. Power Electron. , 1 , 54 - 66
    8. 8)
      • G.G. Oggier , G.O. Garcia , A.R. Oliva .
        8. Oggier, G.G., Garcia, G.O., Oliva, A.R.: ‘Modulation strategy to operate the dual active bridge DC–DC converter under soft switching in the whole operating range’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12281236.
        . IEEE Trans. Power Electron. , 4 , 1228 - 1236
    9. 9)
      • J. Huang , Y. Wang , Z. Li .
        9. Huang, J., Wang, Y., Li, Z., et al: ‘Multifrequency approximation and average modeling of an isolated bidirectional DC–DC converter for DC microgrids’, IET Power Electron., 2016, 9, (6), pp. 11201131.
        . IET Power Electron. , 6 , 1120 - 1131
    10. 10)
      • C. Mi , H. Bai , C. Wang .
        10. Mi, C., Bai, H., Wang, C., et al: ‘Operation, design and control of dual H-bridge-based isolated bidirectional DC–DC converter’, IET Power Electron., 2008, 1, (4), pp. 507517.
        . IET Power Electron. , 4 , 507 - 517
    11. 11)
      • W. Choi , K-M. Rho , B-H. Cho .
        11. Choi, W., Rho, K-M., Cho, B-H.: ‘Fundamental duty modulation of dual-active-bridge converter for wide-range operation’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 40484064.
        . IEEE Trans. Power Electron. , 6 , 4048 - 4064
    12. 12)
      • P. Zumel , L. Ortega , A. Lazaro .
        12. Zumel, P., Ortega, L., Lazaro, A., et al: ‘Control strategy for modular dual active bridge input series output parallel’. 14h IEEE Workshop on Control and Modeling for Power Electronics, 2013, pp. 17.
        . 14h IEEE Workshop on Control and Modeling for Power Electronics , 1 - 7
    13. 13)
      • A. Mohammadpour , L. Parsa , M. H. Todorovic .
        13. Mohammadpour, A., Parsa, L., Todorovic, M. H., et al: ‘Series-input parallel-output modular-phase DC–DC converter with soft switching and high frequency isolation’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 111119.
        . IEEE Trans. Power Electron. , 1 , 111 - 119
    14. 14)
      • A. Maqsood , A. Overstreet , K. Corzine .
        14. Maqsood, A., Overstreet, A., Corzine, K.: ‘Modified Z-source DC circuit breaker topologies’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 73947403.
        . IEEE Trans. Power Electron. , 10 , 7394 - 7403
    15. 15)
      • G.J. Kish , M. Ranjram , P.W. Lehn .
        15. Kish, G.J., Ranjram, M., Lehn, P.W.: ‘A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 148162.
        . IEEE Trans. Power Electron. , 1 , 148 - 162
    16. 16)
      • S. Kenzelmann , A. Rufer , D. Dujic .
        16. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
        . IEEE Trans. Power Electron. , 1 , 89 - 98
    17. 17)
      • J.A. Ferreira .
        17. Ferreira, J.A.: ‘The multilevel modular DC converter’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 44604465.
        . IEEE Trans. Power Electron. , 10 , 4460 - 4465
    18. 18)
      • T. Luth , M.M.C. Merlin , T.C. Green .
        18. Luth, T., Merlin, M.M.C., Green, T.C., et al: ‘High-frequency operation of a DC/AC/DC system for HVDC applications’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 41074115.
        . IEEE Trans. Power Electron. , 8 , 4107 - 4115
    19. 19)
      • J. Yang , Z. He , H. Pang .
        19. Yang, J., He, Z., Pang, H., et al: ‘The hybrid-cascaded DC–DC converters suitable for HVdc applications’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 53585363.
        . IEEE Trans. Power Electron. , 10 , 5358 - 5363
    20. 20)
      • A.A.J. Far , M. Hajian , D. Jovcic .
        20. Far, A.A.J., Hajian, M., Jovcic, D., et al: ‘High-power modular multilevel converter optimal design for DC/DC converter applications’, IET Power Electron., 2016, 9, (2), pp. 247255.
        . IET Power Electron. , 2 , 247 - 255
    21. 21)
      • Y. Hu , R. Zeng , W. Cao .
        21. Hu, Y., Zeng, R., Cao, W., et al: ‘Design of a modular, high step-up ratio DC–DC converter for HVDC applications integrating offshore wind power’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 21902202.
        . IEEE Trans. Ind. Electron. , 4 , 2190 - 2202
    22. 22)
      • I.A. Gowaid , G.P. Adam , S. Ahmed .
        22. Gowaid, I.A., Adam, G.P., Ahmed, S., et al: ‘Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC–DC transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54395457.
        . IEEE Trans. Power Electron. , 10 , 5439 - 5457
    23. 23)
      • I.A. Gowaid , G.P. Adam , A.M. Massoud .
        23. Gowaid, I.A., Adam, G.P., Massoud, A.M., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 108123.
        . IEEE Trans. Power Electron. , 1 , 108 - 123
    24. 24)
      • S.P. Engel , M. Stieneker , N. Soltau .
        24. Engel, S.P., Stieneker, M., Soltau, N., et al: ‘Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids’, IEEE Trans. Power Electron., 2014, 30, (1), pp. 124137.
        . IEEE Trans. Power Electron. , 1 , 124 - 137
    25. 25)
      • B. Zhao , Q. Song , J. Li .
        25. Zhao, B., Song, Q., Li, J., et al: ‘Modular multilevel high-frequency-link DC transformer based on dual active phase-shift principle for medium-voltage DC power distribution application’, IEEE Trans. Power Electron.2017, 32, (3), pp. 17791791.
        . IEEE Trans. Power Electron. , 3 , 1779 - 1791
    26. 26)
      • D. Costinett , D. Maksimovic , R. Zane .
        26. Costinett, D., Maksimovic, D., Zane, R.: ‘Design and control for high efficiency in high step-down dual active bridge converters operating at high switching frequency’, IEEE Trans. Power Electron.2013, 28, (8), pp. 39313940.
        . IEEE Trans. Power Electron. , 8 , 3931 - 3940
    27. 27)
      • B. Zhao , Q. Song , W. Liu .
        27. Zhao, B., Song, Q., Liu, W., et al: ‘Current-stress-optimized switching strategy of isolated bidirectional DC–DC converter with dual-phase-shift control’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 44584467.
        . IEEE Trans. Ind. Electron. , 4458 - 4467
    28. 28)
      • V. Karthikeyan , R. Gupta .
        28. Karthikeyan, V., Gupta, R.: ‘Zero circulating current modulation for isolated bidirectional dual-active-bridge DC–DC converter’, IET Power Electron., 2016, 9, (7), pp. 15531561.
        . IET Power Electron. , 7 , 1553 - 1561
    29. 29)
      • F. Krismer , J. W. Kolar .
        29. Krismer, F., Kolar, J. W.: ‘Efficiency-optimized high-current dual active bridge converter for automotive applications’, IEEE Trans. Power Electron., 2012, 59, (7), pp. 27452760.
        . IEEE Trans. Power Electron. , 7 , 2745 - 2760
    30. 30)
      • Z. Xing , X. Ruan , H. You .
        30. Xing, Z., Ruan, X., You, H., et al: ‘Soft-switching operation of isolated modular DC/DC converters for application in HVDC grids’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 848859.
        . IEEE Trans. Power Electron. , 4 , 848 - 859
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0857
Loading

Related content

content/journals/10.1049/iet-pel.2016.0857
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address