access icon free Investigation on pulse-width amplitude modulation-based single-phase quasi-Z-source photovoltaic inverter

The pulse-width amplitude modulation (PWAM) method was proposed for the single-phase quasi-Z-source inverter (qZSI)-based photovoltaic (PV) power system to reduce quasi-Z-source (qZS) impedance values while improving efficiency. The method modified sinusoidal pulse-width modulation (SPWM) of the qZSI by combining pulse-amplitude modulation (PAM) and a varied dc-link voltage envelope was produced. The SPWM worked at low dc-link voltage, lowering voltage stress and avoiding shoot-through switching. The PAM worked at the varied dc-link voltage, reducing the number of switching events. As a result, the power dissipation decreased compared to working at the constant dc-link voltage. This study further investigates the PWAM-based single-phase qZS PV inverter system. An improved topology with control strategy is proposed for its grid-connected and standalone operation. Design method of impedance parameters is detailed. The performance in boost and buck operation is discussed when the single-phase qZSI using SPWM and PWAM. Simulation and experimental results verify outstanding features of the PWAM for single-phase qZSI, and the proposed approach for dual-mode operation of the PWAM-based single-phase qZS PV power system.

Inspec keywords: photovoltaic power systems; PWM invertors

Other keywords: power dissipation; qZSI-based photovoltaic power system; boost; sinusoidal pulse-width modulation; single-phase quasi-Z-source photovoltaic inverter; PWAM method; PV power system; quasi-Z-source impedance values; constant dc-link voltage; pulse-width amplitude modulation photovoltaic inverter; buck operation; qZS impedance values; operation

Subjects: Solar power stations and photovoltaic power systems; DC-AC power convertors (invertors)

References

    1. 1)
      • 16. Xue, Y., Ge, B., Peng, F.Z.: ‘Reliability, efficiency, and cost comparisons of MW-scale photovoltaic inverters’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 15–20 September 2012, pp. 16271634.
    2. 2)
      • 7. Rymarski, Z., Bernacki, K.: ‘Influence of Z-source output impedance on dynamic properties of single-phase voltage source inverters for uninterrupted power supply’, IET Power Electron., 2014, 7, (8), pp. 19781988.
    3. 3)
      • 17. Sun, D., Ge, B., Yan, X., et al: ‘Modeling, impedance design, and efficiency analysis of quasi-Z source module in cascade multilevel photovoltaic power system’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61086117.
    4. 4)
      • 11. Zhou, Y., Li, H., Li, H.: ‘A single-phase PV quasi-Z-source inverter with reduced capacitance using modified modulation and double-frequency ripple suppression control’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 21662173.
    5. 5)
      • 19. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Phase-shifted pulse-width-amplitude modulation for quasi-Z-source cascade multilevel inverter based photovoltaic power system’, IET Power Electron., 2014, 7, (6), pp. 14441456.
    6. 6)
      • 13. Makovenko, E., Husev, O., Zakis, J., et al: ‘Passive power decoupling approach for three-level single-phase impedance Source Inverter based on resonant and PID controllers’, 2017 11th IEEE Int. Conf. Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 2017, pp. 516521.
    7. 7)
      • 2. Abu-Rub, H., Malinowski, M., Al-Haddad, K.: ‘Power electronics for renewable energy systems, transportation and industrial applications’ (John Wiley & Sons Ltd., Hoboken, NJ, 2014).
    8. 8)
      • 15. Li, Y., Gao, W., Li, J., et al: ‘Double line frequency ripple cancelling for single-phase quasi-Z-source inverter’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016.
    9. 9)
      • 26. Cintron-Rivera, J.G., Li, Y., Jiang, S., et al: ‘Quasi-Z-source inverter with energy storage for photovoltaic power generation systems’. Proc. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 6–11 March 2011, pp. 401406.
    10. 10)
      • 23. Zhang, H., Ge, B., Liu, Y., et al: ‘A hybrid modulation method for single-phase quasi-Z source inverter’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 14–18 September 2014, pp. 44444449.
    11. 11)
      • 10. Yu, Y., Zhang, Q., Liang, B., et al: ‘Single-phase Z-source inverter: analysis and low-frequency harmonics elimination pulse width modulation’. Proc. Energy Conversion Congress and Exposition, Phoenix, USA, 2011, pp. 22602267.
    12. 12)
      • 29. Barater, D., Buticchi, G., Lorenzani, E., et al: ‘Active common-mode filter for ground leakage current reduction in grid-connected PV converters operating with arbitrary power factor’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 39403950.
    13. 13)
      • 9. Liang, W., Liu, Y., Ge, B., et al: ‘Double-line-frequency ripple model, analysis & impedance design for energy stored single-phase quasi-Z source photovoltaic system’, IEEE Trans. Ind. Electron., 2016.
    14. 14)
      • 14. Ge, B., Liu, Y., Abu-Rub, H., et al: ‘An active filter method to eliminate DC-side low-frequency power for a single-phase quasi-Z-source inverter’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 48384848.
    15. 15)
      • 6. Zare, F., Firouzjaee, J.A.: ‘Hysteresis band current control for a single phase Z-source inverter with symmetrical and asymmetrical Z-network’. Proc. IEEE Power Conversion Conf., April 2007, pp. 143148.
    16. 16)
      • 8. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 41944202.
    17. 17)
      • 21. Liu, Y., Ge, B., Abu-Rub, H.: ‘Modeling and controller design of quasi-Z-source cascade multilevel inverter based three-phase grid-tie photovoltaic power system’, IET Renew. Power Gener., 2014, 8, (8), pp. 925936.
    18. 18)
      • 20. Sun, D., Ge, B., Liang, W., et al: ‘An energy stored quasi-Z source cascade multilevel inverter based photovoltaic power generation system’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54585467.
    19. 19)
      • 18. Zhou, Y., Liu, L., Li, H.: ‘A high-performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) using eGaN FETs’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 27272738.
    20. 20)
      • 1. Siwakoti, Y.P., Peng, F.Z., Blaabjerg, F., et al: ‘Impedance-source networks for electric power conversion part I: a topological review’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 699716.
    21. 21)
      • 12. Ge, B., Liu, Y., Abu-Rub, H., et al: ‘Current ripple damping control to minimize impedance network for single-phase quasi-Z source inverter system’, IEEE Trans. Ind. Inf., 2016, 12, (3), pp. 10431054.
    22. 22)
      • 24. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Hybrid pulsewidth modulated single-phase quasi-z-source grid-tie photovoltaic power system’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 621632.
    23. 23)
      • 3. Liu, Y., Abu-Rub, H., Ge, B., et al: ‘Impedance source power electronic converters’ (John Wiley & Sons Ltd., Hoboken, NJ, 2016).
    24. 24)
      • 27. Ge, B., Peng, F.Z., Abu-Rub, H., et al: ‘Novel energy stored single-stage photovoltaic power system with constant dc-link peak voltage’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 2836.
    25. 25)
      • 4. Liu, Y., Abu-Rub, H., Ge, B.: ‘Z-source/quasi-Z-source inverters – derived networks, modulations, controls, and emerging applications to photovoltaic conversion’, IEEE Ind. Electron. Mag., 2014, 8, (4), pp. 3244.
    26. 26)
      • 5. Loh, P.C., Vilathgamuwa, D.M., Lai, Y.S., et al: ‘Pulsewidth modulation of Z-source inverters’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13461355.
    27. 27)
      • 25. Li, Y., Liu, Y., Abu-Rub, H.: ‘PWAM controlled quasi-Z source motor drive’. 2017 IEEE Int. Symp. Industrial Electronics (ISIE), 2017.
    28. 28)
      • 22. Aleenejad, M., Ahmadi, R.: ‘Fault-tolerant multilevel cascaded H-bridge inverter using impedance-sourced network’, IET Power Electron., 2016, 9, (11), pp. 21862195.
    29. 29)
      • 28. Li, X., Zhang, H., Shadmand, M.B., et al: ‘Model predictive control of voltage source inverter with seamless transition between islanded and grid-connected operations’, IEEE Trans. Ind. Electron., vol. PP, (99), pp. 11.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0593
Loading

Related content

content/journals/10.1049/iet-pel.2016.0593
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading