Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Interleaved full ZVZCS DC–DC boost converter: analysis, design, reliability evaluations and experimental results

In this study, a new interleaved full soft switching DC–DC boost converter with a high power reliability is proposed. To achieve soft switching, a simple auxiliary circuit consisting of one switch, one diode, one inductor and two capacitors is employed in each single-phase DC–DC boost converter connected in parallel. All switches and diodes, including main and auxiliary ones, operate under soft switching conditions. These soft switching conditions consist of zero voltage and zero current switching (ZVZCS) for all switches and diodes at switching transitions except the output diodes, which turn off only with zero current switching. The soft switching technique used in this study decreases power losses which leads the converter to have higher efficiency and reliability. Also, the auxiliary circuit is located out of the main power path preventing high voltage and current stresses on the switches. In this study, operational modes analysis, design procedure, power reliability evaluations and laboratory prototype results with switching frequency of 20 kHz, input voltage of 48 V and output power of 40 W are presented.

References

    1. 1)
      • 2. Zhang, D., Wang, F., Burgos, R., et al: ‘DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving’, IEEE Trans. Power Electron., 2011, 26, (6), pp. 17411753.
    2. 2)
      • 16. Altintas, N., Bakan, A.F., Aksoy, I.: ‘A novel ZVT-ZCT-PWM boost converter’, IEEE Trans. Power Electron., 1994, 29, (1), pp. 256265.
    3. 3)
      • 14. Jung, D.Y., Ji, Y.H., Park, S.H., et al: ‘Interleaved soft-switching boost converter for photovoltaic power-generation system’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11371145.
    4. 4)
      • 21. ‘Reliability Prediction Models’, Reliability Information Analysis Center, 6000 Flanagan Rd, Suite 3, Utica, NY 13502-1348, RIAC-MIL-HDBK-217Plus, 2006.
    5. 5)
      • 5. Chae, S., Song, Y., Park, S., et al: ‘Digital current sharing method for parallel interleaved DC–atDC converters using input ripple voltage’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 19.
    6. 6)
      • 12. Baggio, J.E., Hey, H.L., Gründling, H.A., et al: ‘Isolated interleaved-phase-shift-PWM DC–atDC ZVS converter’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 17951802.
    7. 7)
      • 20. Martins, M.L., Gründling, H.A., Pinheiro, H., et al: ‘A ZVT PWM boost converter using an auxiliary resonant source’. Proc. APEC, 2002, pp. 11011107.
    8. 8)
      • 7. Su, J.T., Liu, C.W.: ‘A novel phase-shedding control scheme for improved light load efficiency of multiphase interleaved DC–DC converters’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 47424752.
    9. 9)
      • 4. Lee, W., Han, B.M., Cha, H.: ‘Battery ripple current reduction in a three phase interleaved DC–atDC converter for 5 kW battery charger’. Proc. ECCE, 2011, pp. 35353540.
    10. 10)
      • 15. Hua, G., Yang, E.X., Jiang, Y., et al: ‘Novel zero-current-transition PWM converters’, IEEE Trans. Power Electron., 1994, 9, (6), pp. 601606.
    11. 11)
      • 9. Choi, J., Cha, H., Han, B.M.: ‘A three-phase interleaved DC–DC converter with active clamp for fuel cells’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21152123.
    12. 12)
      • 19. Wu, T.F., Lai, Y.S., Hung, J.C., et al: ‘Boost converter with coupled inductors and buck-boost type of active clamp’. Proc. PESC, 2005, pp. 399405.
    13. 13)
      • 13. Li, W., He, X.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250.
    14. 14)
      • 3. Gu, Y., Zhong, D.: ‘Interleaved boost converter with ripple cancellation network’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 38603869.
    15. 15)
      • 18. Song, I.B., Jung, D.Y., Ji, Y.H., et al: ‘A soft switching boost converter using an auxiliary resonant circuit for a PV system’. Proc. ICPE & ECCE, 2011, pp. 28382843.
    16. 16)
      • 11. Xuewei, P., Rathore, A.K.: ‘Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel cell vehicles’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 55355546.
    17. 17)
      • 10. Li, W., He, X.: ‘High step-up soft switching interleaved boost converters with cross-winding-coupled inductors and reduced auxiliary switch number’, IET Power Electron., 2009, 2, (2), pp. 125133.
    18. 18)
      • 17. Park, S., Choi, S.: ‘Soft-switched CCM boost converters with high voltage gain for high-power applications’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 12111217.
    19. 19)
      • 8. Dwari, S., Parsa, L.: ‘An efficient high-step-up interleaved DC–atDC converter with a common active clamp’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 6678.
    20. 20)
      • 6. Bae, H., Lee, J., Wang, J., et al: ‘Digital resistive current (DRC) control for the parallel interleaved DC–DC converters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24652476.
    21. 21)
      • 1. Haghbin, S., Thiringer, T.: ‘Reliability analysis and enhancement of the AC/DC stage of a 3.3 kW onboard vehicle battery charger’. Proc. Eleventh Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), 2016, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0578
Loading

Related content

content/journals/10.1049/iet-pel.2016.0578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address