Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High power factor high power density high voltage converter based on AC link

To meet the demand of high efficiency, high power density and good input and output performance for high power high voltage converter, the high frequency AC-link scheme, below resonance mode of LCC resonant circuit and soft-switched control method are combined in the proposed converter. The AC-link scheme can bring good performance at input port with small size, the continuous mode can reduce the peak current value in switches and the conduction loss, soft-switching character can reduce the switching loss. To make the combination applicable in high voltage application, this study introduces a control method including switch commutation, control algorithm and control block diagram. To verify accuracy of control parameters and feasibility of the proposed converter, the simulation and experiment are conducted on a 50 kV, 80 kW prototype. It turns out that the experiment results are in agreement with simulation and theoretically expected results. The experimental results also show that the output voltage ripple is less than 1% at 50 kV, the input power factor is 0.99, the total harmonic distortion of input current is less than 7.5%, the total efficiency is 94.5% and power density is 0.93 W/cm3.

References

    1. 1)
      • 9. Klaassens, J.B.: ‘DC-AC series-resonant converter system with high internal frequency generating multiphase AC waveforms for multikilowatt power levels’, IEEE Trans. Power Electron., 1987, 2, (3), pp. 247256.
    2. 2)
      • 6. Ryoo, H.J., Jang, S.R., Jin, Y.S., et al: ‘Design of high voltage capacitor charger with improved efficiency, power density and reliability’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 10761084.
    3. 3)
      • 33. Wang, L., Zhang, W., Na, J., et al: ‘Robust repetitive control of three-phase inverter system using high order internal model’. 35th Chinese Control Conf. (CCC), 2016, pp. 85448549.
    4. 4)
      • 13. Huisman, H., de Haan, S.W.H.: ‘A DC to 3-phase series-resonant converter with low harmonic distortion’, IEEE Trans. Ind. Electron., 1985, IE-32, (2), pp. 142149.
    5. 5)
      • 17. Rudy, L.: ‘Resonant link PFN charger and modulator power supply’. Proc. of 16th IEEE Int. Pulsed Power Conf., Albuquerque, New Mexico, 2007, pp. 14951499.
    6. 6)
      • 26. Oghafi, V., Radan, A.: ‘Bidirectional switch commutation for high frequency UPF matrix converter supplying inductive power transfer system’. 5th Power Electronics, Drive Systems and Technologies Conf., (PEDSTC), 2014, pp. 422427.
    7. 7)
      • 30. Bland, M.J., Clare, J.C., Zanchetta, P., et al: ‘A high frequency resonant power converter for high power RF application’. 2005 European Conf. on Power Electronics and Applications, 2005, pp. 110.
    8. 8)
      • 4. Sasangka, F., Hagiwara, M., Akagi, H.: ‘A front-to-front (FTF) system consisting of multiple modular multilevel cascade converters for offshore wind farms’. Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), 2014, pp. 17611768.
    9. 9)
      • 16. Harrison, M.J., Li, H., Kotula, T., et al: ‘Closed loop control of a cyclo-converter’. United States Patent, No. 9036373, 2015.
    10. 10)
      • 11. Kim, I.-D., Cho, G.-H.: ‘New bilateral zero voltage switching Ac/Ac converter using high frequency partial resonant link’. 16th Annual Conf. on IEEE Industrial Electronics Society, 1990, vol. 2, pp. 857862.
    11. 11)
      • 27. Zhang, Z., Liu, Q., Wu, Z., et al: ‘Series resonant converter based on HF AC-link technology’, High Power Laser Part. Beams, 2011, 23, (11), pp. 29152918.
    12. 12)
      • 22. Cook, D.J., Catucci, M., Wheeler, P.W., et al: ‘Development of a predictive controller for use on a direct converter for high-energy physics applications’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43254334.
    13. 13)
      • 2. Kumar, N., Singh, U., Kumar, A., et al: ‘Design of 95 GHz, 100 kW Gyrotron for active denial system application’, Vacuum, 2013, 99, (1), pp. 99106.
    14. 14)
      • 1. Bees, G.L., Simpson, L., Tydeman, A.: ‘A precision 75 kW, 25 kV power system for A klystron amplifier’. IEEE Particle Accelerator Conf., 2007 (PAC), 2007, pp. 593595.
    15. 15)
      • 29. Li, W., Liu, Q., Zhang, Z.: ‘High power density high voltage power supply based on AC-link’. 54th Annual Conf. of the Society of Instrument and Control Engineers of Japan (SICE), 2015, pp. 848855.
    16. 16)
      • 31. Zhang, Z., Xie, Y., Yuan, Z.: ‘Analysis of circuit characteristics of LCC resonant converter’, Trans. Chin. Electrotech. Soc., 2013, 28, (4), pp. 5057.
    17. 17)
      • 23. Reyes-Moraga, E., Watson, A., Care, J., et al: ‘Predictive control of a direct resonant converter with output voltage compensation for high voltage DC power supply applications’. IEEE 15th European Conf. on Power Electronics and Applications, 2013.
    18. 18)
      • 21. Amirabadi, M., Balakrishnan, A., Toliyat, H.A., et al: ‘High-frequency AC-link PV inverter’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 281291.
    19. 19)
      • 18. Rudy, L.: ‘Development of a low-EMI advanced variable speed drive for shipboard application’. Proc. of Conf. Record of the 2000 Twenty-Forth Int. Power modular Symp., Norfolk, Virginia, 2000, pp. 8996.
    20. 20)
      • 5. Cho, J.G., Jeong, C.Y., Baek, J.W., et al: ‘High power factor three phase rectifier for high power density AC/DC conversion applications’. Applied Power Electronics Conf. and Exposition, 1999, vol. 2, pp. 910915.
    21. 21)
      • 20. Wu, Z., Liu, Q., Zhang, Z., et al: ‘A novel AC-link charging technology’, Chin. J. Power Sources, 2012, 36, (2), pp. 268270.
    22. 22)
      • 10. Tilgenkamp, N.V., de Haan, S.W.H., Huisman, H.: ‘A novel series-resonant converter topology’, IEEE Trans. Ind. Electron., 1987, IE-34, (2), pp. 240246.
    23. 23)
      • 35. Bland, M.J., Clare, J.C., Zanchetta, P., et al: ‘A high frequency resonant power converter for high power RF applications’. European Conf. on Power Electronics and Applications, 2005, pp. 110.
    24. 24)
      • 7. Kolar, J.W., Friedli, T.: ‘The essence of three-phase PFC rectifier systems – Part I’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 176198.
    25. 25)
      • 8. Schwarz, F.C.: ‘A doublesided cycloconverter’, IEEE Trans. Ind. Electron. Control Instrum., 1981, IECI-28, (4), pp. 282291.
    26. 26)
      • 28. Li, W., Liu, Q., Zhang, Z., et al: ‘High power high voltage DC power supply based on series-resonant high frequency AC link technology’, Trans. Chin. Electrotech. Soc., 2016, 31, (16), pp. 6571.
    27. 27)
      • 14. Huisman, H.: ‘Design and control of a class of multiphase series-resonant power converters’ (Mechanical Maritime & Materials Engineering, Delft University Press, 1992).
    28. 28)
      • 24. Zeng, Y., Cai, J., Zhang, Z.: ‘Research on the induction-heating power supply using AC–AC conversion theory’, Power Electron., 2008, 42, (3), pp. 13.
    29. 29)
      • 32. Oruganti, R., Lee, F.C.: ‘Resonant power processors, part I – state plane analysis’, IEEE Trans. Ind. Appl., 1985, 21, (6), pp. 14531460.
    30. 30)
      • 25. Ecklebe, A., Lindemann, A., Schulz, S.: ‘Bidirectional switch commutation for matrix converter supplying a series resonant load’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11731181.
    31. 31)
      • 15. Huisman, H.: ‘A multiphase series-resonant converter with a new topology and a reduced number of thyristors’, IEEE Trans. Power Electron., 1995, 10, (1), pp. 8693.
    32. 32)
      • 19. Erik, L., Deffley, G., Hoffmann, F., et al: ‘750 kW AC-link power converter for renewable generation and energy storage applications’, IEEE Energytech 2011, 2011, pp. 16, doi: 10.1109/EnergyTech.2011.5948513.
    33. 33)
      • 3. Ma, S.X., Zhang, M., Xia, L.L.: ‘High-voltage power supply for ECRH system on J-TEXT Tokamak’. IEEE 25th Symp. on Fusion Engineering (SOFE), 2013, pp. 15.
    34. 34)
      • 12. Limpaecher, R., Rodriguez, R., O'Loughlin, J.: ‘Harmonic free new inverter topology for high voltage, high power applications’. Twenty-Fourth Int. Power Modulator Symp., 2000, pp. 101106.
    35. 35)
      • 34. Wang, D., Zhou, L., Wang, Z.: ‘Research on winding distributed capacitance adjustment of HF and HV transformer based on winding-rectification structure’, Transformer, 2013, 50, (9), pp. 2529.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0225
Loading

Related content

content/journals/10.1049/iet-pel.2016.0225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address