access icon free Efficiency comparison between Si and SiC-based implementations in a high gain DC–DC boost converter

An efficiency comparison between a boost converter implemented with silicon (Si) devices and the same converter implemented in the other three cases, that is, employing two combinations of silicon carbide (SiC) devices and a mixture of Si and SiC elements is presented. The converter has been designed for high-voltage low-power applications required by light-emitting diode (LED) lighting. The comparison is performed on an equal basis and discusses the influence on the converter efficiency of the semiconductor power devices and the passive components. The experiments are carried out in a single-stage boost converter prototype delivering a maximum output voltage of 1200 V when supplied by a 12 V battery. The measurements show that the highest efficiency is obtained when the power transistor is implemented by a normally-off junction field-effect transistor and the diode by a SiC Schottky device with a small parasitic capacitance. The implementation with the highest efficiency has been selected for supplying a light spot of 320 LEDs in series, which results in an output voltage of 956 V and an output power of 20.6 W.

Inspec keywords: Schottky diodes; DC-DC power convertors; light emitting diodes; elemental semiconductors; lighting; power electronics; silicon compounds; wide band gap semiconductors; silicon

Other keywords: SiC; light-emitting diode lighting; SiC devices; DC–DC boost converter; LED lighting; normally-off junction field-effect transistor; power 20.6 W; power transistor; voltage 1200 V; high-voltage low-power applications; voltage 956 V; voltage 12 V; Si devices; Si; converter efficiency; parasitic capacitance; semiconductor power devices; SiC Schottky device

Subjects: Power electronics, supply and supervisory circuits; DC-DC power convertors; Power semiconductor devices

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 34. Erickson, R.W., Maksimovik, D.: ‘Fundamentals of power electronics’ (New York, Kluwer Academic Publishers, 2001).
    10. 10)
    11. 11)
      • 38. Laimer, G., Kolar, J.W.: ‘Accurate measurement of the switching losses of ultra-high switching speed coolmos power transistor/sic diode combination employed in unity power factor Pwm rectifier systems’. PCIM, P. (ed.), 2002.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 30. Utkin, V.I., Gulder, J., Shi, J.: ‘Sliding mode control in electromechanical systems’ (CRC Press, Taylor and Francis Group ed, 2009, 2nd edn.).
    20. 20)
      • 37. Kazimerczuk, M.K.: ‘Pulse-width modulated dc–dc power converters’ (John Wiley & Sons, Ltd, 1997).
    21. 21)
    22. 22)
      • 39. Valderrama-Blavi, H., Leon-Masich, A., Bosqué-Moncusí, J.M., Martínez-Salamero, L.: ‘Convertidor elevador y foco provisto de éste’. Spanish Patent, REF.P25504ES00, 2010.
    23. 23)
      • 8. Abuishmais, I., Undeland, T.: ‘Dynamic characterization of 63 Mq, 1.2 Kv, normally-off Sic Vjfet’. IEEE Eighth Int. Conf. on Power Electronics and ECCE Asia (ICPE & ECCE), 2011, June 2011.
    24. 24)
    25. 25)
      • 1. Millan, J., Godignon, P., Perpinya, X., Perez-Tomas, A., Rebollo, J.: ‘A survey of wide band gap power semiconductor devices’, IEEE Trans. Power Electron., 2013, PP, (99), p. 1.
    26. 26)
    27. 27)
      • 14. Aggeler, D., Biela, J., Inoue, S., Akagi, H., Kolar, J.W.: ‘Bi-Directional isolated Dc-Dc converter for next-generation power distribution – comparison of converters using Si and Sic devices’. Power Conversion Conf. – Nagoya, 2007, PCC'07, 2007.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 23. Friedli, T., Round, S.D., Kolar, J.W.: ‘A 100 kHz Sic sparse matrix converter’. Power Electronics Specialists Conf., 2007, PESC 2007, June 2007.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 20. Aggeler, D., Biela, J., Kolar, J.W.: ‘A compact, high voltage 25 Kw, 50 Khz Dc-Dc converter based on Sic Jfets’. Twenty-Third Annual IEEE Applied Power Electronics Conf. and Exposition, 2008, APEC 2008, February 2008.
    39. 39)
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0591
Loading

Related content

content/journals/10.1049/iet-pel.2014.0591
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading