http://iet.metastore.ingenta.com
1887

Cell capacitor sizing in multilevel converters: cases of the modular multilevel converter and alternate arm converter

Cell capacitor sizing in multilevel converters: cases of the modular multilevel converter and alternate arm converter

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multilevel converters, such as the modular multilevel converter (MMC) or the alternate arm converter (AAC), rely on charged capacitors in their cells to generate their AC voltage waveform. Since the cell capacitors are physically large and occupy approximately half the cell volume, their capacitance must be kept minimal while limiting the voltage fluctuation caused by the current passing periodically through these capacitors. This study proposes a mathematical model which estimates the energy deviation for the stacks of both the MMC and the AAC during steady-state operation under any power factor and for AC voltage magnitude fluctuation of up to ±10%. The analysis is then used to calculate the minimum size for the cell capacitors in order to keep their voltage fluctuation within set boundaries for both topologies. The results show that the MMC requires 39 kJ/MVA of capacitive energy storage under sinusoidal modulation but this reduces with triplen injection modulation. The AAC has a lower requirement for storage in its cells of 11 kJ/MVA but the AAC has a six-pulse DC current ripple which requires a filter estimated to have a further 33% capacitive storage.

References

    1. 1)
      • 1. Marquardt, R., Lesnicar, A., Hildinger, J.: ‘Modulares stromrichterkonzept für netzkupplungsanwendung bei hohen spannungen’ (ETGFachtagung, Bad Nauheim, Germany, 2002).
    2. 2)
      • 2. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. IEEE Power Tech Conf. Proc., 2003, Bologna, June 2003, vol. 3.
    3. 3)
    4. 4)
      • 4. High-voltage direct current (HVDC) power transmission using voltage sourced converter (VSC), BSi, 2011, pD IEC/TR 62543:2011.
    5. 5)
      • 5. Sellick, R., Akerberg, M.: ‘Comparison of hvdc light (vsc) and hvdc classic (lcc) site aspects, for a 500 mw 400 kv hvdc transmission scheme’. Tenth IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), 2012, pp. 16.
    6. 6)
      • 6. Merlin, M., Green, T., Mitcheson, P., Trainer, D., Critchley, D., Crookes, R.: ‘A new hybrid multi-level voltage-source converter with dc fault blocking capability’. Nineth IET Int. Conf. on AC and DC Power Transmission, 2010, ACDC, October 2010.
    7. 7)
      • 7. Trainer, D., Davidson, C., Oates, C., Macleod, N., Critchley, D., Crookes, R.: ‘A new hybrid voltage-sourced converter for hvdc power transmission’. Cigre Session, 2010.
    8. 8)
    9. 9)
      • 9. Feldman, R., Watson, A.J., Clare, J.C., Wheeler, P.W., Trainer, D.R., Crookes, R.W.: ‘DC fault ride-through capability and statcom operation of a hybrid voltage source converter arrangement for HVDC power transmission and reactive power compensation’. Sixth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012), March 2012, pp. 15.
    10. 10)
      • 10. Sheridan, C., Merlin, M., Green, T.: ‘Reduced dynamic model of the alternate arm converter’. IEEE Fifteenth IEEE Workshop on Control and Modeling for Power Electronics (COMPEL), Santander, Spain, June 2014, pp. 16.
    11. 11)
      • 11. Luth, T., Merlin, M., Green, T., et al: ‘Choice of ac operating voltage in hv dc/ac/dc system’. IEEE Power and Energy Society General Meeting (PES'2013), 2013, pp. 15.
    12. 12)
    13. 13)
      • 13. Judge, P., Merlin, M., Mitcheson, P., Green, T.: ‘Power loss and thermal characterization of igbt modules in the alternate arm converter’. IEEE Energy Conversion Congress and Exposition (ECCE'2013), 2013, pp. 17251731.
    14. 14)
      • 14. Allebrod, S., Hamerski, R., Marquardt, R.: ‘New transformerless, scalable modular multilevel converters for hvdc-transmission’. IEEE Power Electronics Specialists Conf., 2008 (PESC 2008), June 2008, pp. 174179.
    15. 15)
      • 15. Adam, G., Finney, S., Williams, B., Trainer, D., Oates, C., Critchley, D.: ‘Network fault tolerant voltage-source-converters for high-voltage applications’. Nineth IET Int. Conf. on AC and DC Power Transmission, 2010 (ACDC), 2010, pp. 15.
    16. 16)
      • 16. Marquardt, R.: ‘Modular multilevel converter topologies with DC-short circuit current limitation’. IEEE Eighth Int. Conf. on Power Electronics and ECCE Asia (ICPE ECCE'2011), June 2011, pp. 14251431.
    17. 17)
    18. 18)
      • 18. ZVEI: ‘General safety recommendations for power capacitors’, http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/Capacitors/PDF/ZVEI_20General_20safety_20power_20capacitors,property=Data_en.pdf;/ZVEI_General_safety_power_capacitors.pdf, July 2013.
    19. 19)
      • 19. Munch, P., Gorges, D., Izak, M., Liu, S.: ‘Integrated current control, energy control and energy balancing of modular multilevel converters’. IECON 2010 – 36th Annual Conf. on IEEE Industrial Electronics Society, November 2010, pp. 150155.
    20. 20)
      • 20. EPCOS: ‘Power capacitors – extended range with higher energy density’. http://www.epcos.com/epcos-en/374108/tech-library/articles/products---technologies/products---technologies/extended-range-with-higher-energy-density/958830, April 2014.
    21. 21)
      • 21. Antonopoulos, A., Angquist, L., Nee, H.-P.: ‘On dynamics and voltage control of the modular multilevel converter’. Thirteenth European Conf. on Power Electronics and Applications, 2009, EPE'09, 2009, pp. 110.
    22. 22)
      • 22. Angquist, L., Antonopoulos, A., Siemaszko, D., Ilves, K., Vasiladiotis, M., Nee, H.-P.: ‘Inner control of modular multilevel converters – an approach using open-loop estimation of stored energy’. Int. IEEE Power Electronics Conf. (IPEC'2010), 2010, pp. 15791585.
    23. 23)
      • 23. Baruschka, L., Mertens, A.: ‘Comparison of cascaded h-bridge and modular multilevel converters for bess application’. IEEE Energy Conversion Congress and Exposition (ECCE'2011), 2011, pp. 909916.
    24. 24)
      • 24. Korn, A., Winkelnkemper, M., Steimer, P., Kolar, J.: ‘Direct modular multi-level converter for gearless low-speed drives’. IEEE Proc. 2011 – 14th European Conf. on Power Electronics and Applications (EPE'2011), 2011, pp. 17.
    25. 25)
      • 25. Antonopoulos, A., Angquist, L., Harnefors, L., Nee, H.-P.: ‘Optimal selection of the average capacitor voltage for modular multilevel converters’. IEEE Energy Conversion Congress and Exposition (ECCE'2013), 2013, pp. 33683374.
    26. 26)
    27. 27)
      • 27. Engel, S.P., De Doncker, R.W.: ‘Control of the modular multi-level converter for minimized cell capacitance’. IEEE Proc. 2011 – 14th European Conf. on Power Electronics and Applications (EPE 2011), 2011, pp. 110.
    28. 28)
      • 28. Ilves, K., Antonopoulos, A., Harnefors, L., Norrga, S., Angquist, L., Nee, H.-P.: ‘Capacitor voltage ripple shaping in modular multilevel converters allowing for operating region extension’. IECON 2011 – 37th Annual Conf. on IEEE Industrial Electronics Society, 2011, pp. 44034408.
    29. 29)
    30. 30)
      • 30. Grid, N.: ‘The grid code – connection conditions’, http://www.nationalgrid.com/NR/rdonlyres/83FD31D3-0F0E-4B20-8345-9636E0093453/58737/6_CONNECTION_CONDITIONS_I5R2.pdf, January 2013, page 7 of 82.
    31. 31)
      • 31. Arrillaga, J., Liu, Y., Watson, N.: ‘Flexible power transmission: the HVDC options’ (John Wiley & Sons, 2007).
    32. 32)
      • 32. Rohner, S., Bernet, S., Hiller, M., Sommer, R.: ‘Modelling, simulation and analysis of a modular multilevel converter for medium voltage applications’. IEEE Int. Conf. on Industrial Technology (ICIT'2010), 2010, pp. 775782.
    33. 33)
      • 33. Zygmanowski, M., Grzesik, B., Nalepa, R.: ‘Capacitance and inductance selection of the modular multilevel converter’. IEEE 15th European Conf. on Power Electronics and Applications (EPE'2013), 2013, pp. 110.
    34. 34)
      • 34. Harnefors, L., Antonopoulos, A., Nee, H.-P.: ‘Global asymptotic stability of modular multilevel converters with measurement lag and circulating-current control’. IEEE 15th European Conf. on Power Electronics and Applications (EPE'2013), 2013, pp. 110.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0328
Loading

Related content

content/journals/10.1049/iet-pel.2014.0328
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address