access icon free Low-frequency dc bus ripple cancellation in single phase pulse-width modulation inverters

This study presents a topology for a single-phase pulse-width modulation (PWM) converter which achieves low-frequency ripple reduction in the dc bus even when there are grid frequency variations. A hybrid filter is introduced to absorb the low-frequency current ripple in the dc bus. The control strategy for the proposed filter does not require the measurement of the dc bus ripple current. The design criteria for selecting the filter components are also presented in this study. The effectiveness of the proposed circuit has been tested and validated experimentally. A smaller dc-link capacitor is sufficient to keep the low-frequency bus ripple to an acceptable range in the proposed topology.

Inspec keywords: power capacitors; PWM invertors; power grids; power control; PWM power convertors; power filters

Other keywords: low-frequency current ripple cancellation; single phase pulse-width modulation inverters; dc bus; grid frequency variations; control strategy; PWM converter; design criteria; smaller dc-link capacitor; hybrid filter components

Subjects: Other power apparatus and electric machines; DC-AC power convertors (invertors); Power and energy control; Control of electric power systems

References

    1. 1)
      • 7. Harb, S., Mirjafari, M., Balog, R.: ‘Ripple-port module-integrated inverter for grid-connected PV applications’. Proc. IEEE Energy Conversion Cong. and Expo., 2012, pp. 11151120.
    2. 2)
      • 25. Chao, K.H., Cheng, P.T., Shimizu, T.: ‘New control methods for single phase PWM regenerative rectifier with power decoupling function’. Int. Conf. Power Electronics and Drive Systems, 2009, pp. 10911096.
    3. 3)
      • 15. Zhong, Q.C., Ming, W.L., Cao, X., Krstic, M.: ‘Reduction of DC-bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers’. Proc. IEEE IECON, 2012, pp. 708713.
    4. 4)
      • 12. Choi, W., Enjeti, P., Howze, J.W.: ‘Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current’. Proc. IEEE Applied Power Electronics Conf. and Expo., 2004, vol. 1, pp. 355361.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 8. Shimizu, T., Suzuki, S.: ‘Control of a high-efficiency PV inverter with power decoupling function’. Int. Conf. Power Electronics and ECCE Asia, 2011, pp. 15331539.
    10. 10)
    11. 11)
      • 11. Testa, A., De Caro, S., Consoli, A., Cacciato, M.: ‘An active current ripple compensation technique in grid connected fuel cell applications’. Proc. IEEE Energy Conversion Cong. and Expo., 2009, pp. 26422649.
    12. 12)
    13. 13)
    14. 14)
      • 28. Park, J.-H., Jeong, H.-G., Lee, K.-B.: ‘Second order harmonics reduction technique using model predictive control for household energy storage systems’. Proc. IEEE Applied Power Electronics Conf. and Expo., 2014, pp. 30603065.
    15. 15)
      • 21. Salam, Z., Goodman, C.: ‘Compensation of fluctuating DC link voltage for traction inverter drive’. Sixth Int. Conf. Power Electronics and Variable Speed Drives, 1996, pp. 390395.
    16. 16)
      • 31. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: ‘A new single-phase PLL structure based on second order generalized integrator’. Proc. IEEE Power Electronics Specialists Conf., 2006, pp. 16.
    17. 17)
    18. 18)
    19. 19)
      • 24. Tsuno, K., Shimizu, T., Wada, K., Ishii, K.: ‘Optimization of the DC ripple energy compensating circuit on a single-phase voltage source PWM rectifier’. Proc. IEEE Power Electronics Specialists Conf., 2004, vol. 1, pp. 316321.
    20. 20)
      • 20. Harada, K., Nonaka, S.: ‘FFT analysis of the composite PWM voltage source inverter’. Proc. IEEE Power Conversion Conf., 2002, vol. 3, pp. 12571261.
    21. 21)
      • 17. Schenck, M., Lai, J.S., Stanton, K.: ‘Fuel cell and power conditioning system interactions’. Proc. IEEE Applied Power Electronics Conf. and Expo., 2005, vol. 1, pp. 114120.
    22. 22)
    23. 23)
    24. 24)
      • 13. Liu, C., Lai, J.S.: ‘Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load’. Proc. IEEE Power Electronics Specialists Conf., 2005, pp. 29052911.
    25. 25)
      • 22. Larsson, T., Ostlund, S.: ‘Active DC link filter for two frequency electric locomotives’. Int. Conf. Electric Railways in a United Europe, 1995, pp. 97100.
    26. 26)
    27. 27)
    28. 28)
      • 18. Krein, P., Balog, R.: ‘Cost-effective hundred-year life for single-phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance requirements and a ripple power port’. Proc. IEEE Applied Power Electronics Conf. and Expo., 2009, pp. 620625.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0320
Loading

Related content

content/journals/10.1049/iet-pel.2014.0320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading