access icon free Robust voltage-mode controller for DC–DC boost converter

In this study, a robust voltage-mode controller for DC–DC boost converter subject to time varying parameters is presented. The time-varying parameters of the boost converter are considered as the input voltage, the load resistance and the passive components (inductor and capacitor). The proposed controller, designed in discrete time, is based on the sliding mode control combined with the model-reference approach. In addition to this controller structure, the system dynamics are augmented by integral action to ensure zero steady-state tracking error. Experimental results, obtained from prototype operating at the fixed frequency, are provided to demonstrate the excellent robustness of the designed controller against wide input voltage variations and large load transients and also variation in passive components.

Inspec keywords: control system synthesis; robust control; voltage control; capacitors; inductors; DC-DC power convertors; variable structure systems; time-varying systems

Other keywords: dc–dc boost converter; time varying parameters; input voltage variations; system dynamics; passive components; model-reference approach; robust voltage-mode controller; sliding mode control; inductor; controller structure; load resistance; load transients; capacitor; zero steady-state tracking error

Subjects: Stability in control theory; Control system analysis and synthesis methods; Inductors and transformers; Capacitors; Time-varying control systems; Voltage control; Power electronics, supply and supervisory circuits; Multivariable control systems

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 35. Ogata, K.: ‘Discrete-time control systems’ (New Jersey, Prentice-Hall, 1995).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 30. Benavent, J., Figueres, E.: ‘Robust model-following regulator for average current-mode control of boost DC–DC converters’. IEEE Int. Symp. on Industrial Electronics, Dubrovnik, Crotia, June 2005, pp. 715720.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 29. Kurokawa, F., Yamanishi, A.: ‘A new reference model digital control DC–DC converter’. IEEE Vehicle Power and Propulsion Conf., Seoul, Korea, October 2012, pp. 653658.
    26. 26)
    27. 27)
      • 36. Utkin, V.I., Guldner, J., Shi, J.: ‘Sliding mode control in electro-mechanical systems’ (CRC Press, 2009, 2nd edn.).
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Edwards, C., Spurgeon, S.K.: ‘Sliding mode control: theory and applications’ (London, Taylor & Francis, 2000).
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 37. Monsees, G.: ‘Discrete-time sliding mode control’, PhD thesis, Delft University of Technology, 2002.
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0279
Loading

Related content

content/journals/10.1049/iet-pel.2014.0279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading