Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Battery ripple effects in cascaded and parallel connected converters

The area of interest in this study is the current ripple the battery sees as part of the EV drive train. Current research is focussing on using converters in different topologies to reduce the battery peak demand to reduce rate capacity effect. This study describes the effects the choice of topology can have on the battery current ripple. Any ripple as seen by the battery increases losses and temperature which results in a reduced capacity and battery life span. Therefore it is important to be able to control the size of the ripple and its frequency. The research presented in this study analyses two topologies popular in EV drive trains and shows a clear advantage in terms of battery current ripple reduction of parallel topology over the cascaded topology. The method of simulation, the simulation results and the conclusions are presented and discussed in this study.

References

    1. 1)
      • 12. Qing-Chang, Z., Wen-Long, M., Xin, C., Krstic, M.: ‘Reduction of DC-bus voltage ripples and capacitors for single-phase PWM-controlled rectifiers’. IECON 2012 – 38th Annual Conf. on IEEE Industrial Electronics Society, 2012, pp. 708713.
    2. 2)
      • 16. Ferrero, R., Marracci, M., Tellini, B.: ‘Impedance spectroscopy on a single PEM fuel cell for the evaluation of current ripple effects’. IEEE Int., Instrumentation and Measurement Technology Conf. (I2MTC), 2012, pp. 5256.
    3. 3)
      • 14. Lacey, G., Tianxiang, J., Putrus, G., Kotter, R.: ‘The effect of cycling on the state of health of the electric vehicle battery’. 48th Int. Universities Power Engineering Conf. (UPEC), 2013, pp. 17.
    4. 4)
      • 2. Harris, S.J., Timmons, A., Baker, D.R., Monroe, C.: ‘Direct in situ measurements of Li transport in Li-ion battery negative electrodes’, Chem. Phys. Lett., 2010, 485, pp. 265274.
    5. 5)
      • 24. Schupbach, R.M., Balda, J.C.: ‘35 KW ultracapacitor unit for power management of hybrid electric vehicles: bidirectional DC-DC converter design’. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, vol. 3, pp. 21572163.
    6. 6)
      • 27. Zhang, X., Ruan, X., Kim, H., Tse, C.K.: ‘Adaptive active capacitor converter for improving stability of cascaded DC power supply system’, IEEE Trans. Power Electron., 2013, 28, pp. 18071816.
    7. 7)
      • 7. Di Napoli, A., Crescimbini, F., Solero, L., Pede, G., Lo Bianco, G., Pasquali, M.: ‘Ultracapacitor and battery storage system supporting fuel-cell powered vehicles’. EVS 18, Berlin, 2001.
    8. 8)
      • 10. Xiaopeng, W., Ruoping, Y., Fangquan, R.: ‘De-coupling controlled integration structure for two-stage distributed DC boost converter system’. The Fifth Int. Conf. on Power Electronics and Drive Systems. PEDS, 2003, vol. 1, pp. 347352.
    9. 9)
      • 22. Cuk, S.: ‘Modelling, analyses and design of switching converters’. PhD, Engineering and Applied Science, California Institute of Technology, Pasadena, California, 1977.
    10. 10)
      • 1. NAIGT: ‘An independent report on the future of the automotive industry in the UK’, Department for Business, Enterprise and Regulatory Reform, London, 2009.
    11. 11)
      • 15. Gerard, M., Poirot-Crouvezier, J.-P., Hissel, D., Péra, M.-C.: ‘Ripple current effects on PEMFC aging test by experimental and modeling’, J. Fuel Cell Sci. Technol., 2010, 8, pp. 021004021004.
    12. 12)
      • 11. Pesaran, A., Vlahinos, A., Stuart, T.: ‘Cooling and preheating of batteries in hybrid electric vehicles’. Sixth ASME-JSME Thermal Engineering Joint Conf., 2003.
    13. 13)
      • 3. Thounthong, P., Raël, S., Davat, B.: ‘Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications’, J. Power Sources, 2009, 193, pp. 376385.
    14. 14)
      • 21. Benrabeh, A., Khoucha, F., Herizi, O., Benbouzid, M.E.H., Kheloui, A.: ‘FC/battery power management for electric vehicle based interleaved dc-dc boost converter topology’. EPE'13 ECCE Europe, Lille, France, 2013.
    15. 15)
      • 8. Donghwa, S., Younghyun, K., Jaeam, S., Naehyuck, C., Yanzhi, W., Pedram, M.: ‘Battery-supercapacitor hybrid system for high-rate pulsed load applications’. Design, Automation and Test in Europe Conf. and Exhibition (DATE), 2011, pp. 14.
    16. 16)
      • 19. Lambert, S.M., Pickert, V., Holden, J., He, X., Li, W.: ‘Comparison of supercapacitor and lithium-ion capacitor technologies for power electronics applications’. Fifth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2010), 2010, pp. 15.
    17. 17)
      • 28. Payman, A., Pierfederici, S., Meibody-Tabar, F., Davat, B.: ‘An adapted control strategy to minimize DC-bus capacitors of a parallel fuel cell/ultracapacitor hybrid system’, IEEE Trans. Power Electron., 2011, 26, pp. 38433852.
    18. 18)
      • 9. Jongh, P.E.d., Notten, P.H.L.: ‘Effect of current pulses on lithium intercalation batteries’, Solid State Ion., 2002, 148, pp. 259268.
    19. 19)
      • 17. Lynch, B.: ‘Current-Mode Vs. Voltage-Mode Control in Synchronous Buck Converters’, 2003.
    20. 20)
      • 23. Hua, C.C., Chiang, H.C., Chuang, C.W.: ‘New boost converter based on Sheppard-Taylor topology’, IET Power Electron.,2014, 7, pp. 167176.
    21. 21)
      • 20. Miller, J.M., Bohn, T., Dougherty, T.J., Deshpande, U.: ‘Why hybridization of energy storage is essential for future hybrid, plug-in and battery electric vehicles’. Energy Conversion Congress and Exposition. ECCE 2009, IEEE, 2009, pp. 26142620.
    22. 22)
      • 26. Kok, D., Morris, A., Knowles, M.: ‘Novel EV drive train topology - a review of the current topologies and proposal for a model for improved drivability’. The15th European Conf. on Power Electronics and Applications (EPE), 2013, pp. 110.
    23. 23)
      • 25. Lin, C.C., Yang, L.-S., Wu, G.W.: ‘Study of a non-isolated bidirectional DC-DC converter’, IET Power Electron., 2013, 6, pp. 3037.
    24. 24)
      • 18. Kok, D., Morris, A., Knowles, M., Baglee, D.: ‘Converter simulation using SimPowerSystems: a comparison of drive cycles and control strategies’. Int. Conf. on Renewable Energy Research and Applications (ICRERA), 2013, pp. 800805.
    25. 25)
      • 5. Kowal, J., Gerschler, J.B., Schaper, C., Schoenen, T., Sauer, D.U.: ‘Efficient battery models for the design of EV drive trains’. The14th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), , 2010, pp. S11-31S11-38.
    26. 26)
      • 4. Khaligh, A., Zhihao, L.: ‘Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art’, IEEE Trans. Veh. Technol., 2010, 59, pp. 28062814.
    27. 27)
      • 13. Jin, W., Ke, Z., Chingchi, C., Lihua, C.: ‘A high frequency battery model for current ripple analysis’. 25th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2010, pp. 676680.
    28. 28)
      • 29. Jang, M., Ciobotaru, M., Agelidis, V.G.: ‘A single-stage fuel cell energy system based on a buck--boost inverter with a backup energy storage unit’, IEEE Trans. Power Electron., 2012, 27, pp. 28252834.
    29. 29)
      • 6. Bala, S., Tengner, T., Rosenfeld, P., Delince, F.: ‘The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system’. Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, 2012, pp. 34853492.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0224
Loading

Related content

content/journals/10.1049/iet-pel.2014.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address