access icon free 3-Phase 4-wire matrix converter-based voltage sag/swell generator to test low-voltage ride through in wind energy conversion systems

The high penetration of energy from wind energy conversion systems (WECSs) can have a significant influence on the stability, power quality and reliability of power systems. Therefore several countries have developed stringent grid codes in recent years in order to enhance the overall stability of power systems. In these grid codes, the capacity to fulfil low-voltage ride through (LVRT) requirements is considered an important issue for the control of WECSs. Therefore in this study, a novel voltage sag/swell generator (VSG) based on a 4-leg matrix converter is presented. This VSG can be used to generate the symmetrical and asymmetrical faults required to test LVRT algorithms in a laboratory environment. The performance of the VSG is experimentally demonstrated and compared with the operation of other VSGs conventionally used for LVRT studies.

Inspec keywords: wind power plants; power generation faults; power supply quality; power generation reliability; matrix convertors; electric generators; power system stability

Other keywords: 3-phase 4-wire matrix converter; low voltage ride through; asymmetrical faults; voltage sag; VSG; WECS; power system reliability; swell generator; wind energy conversion system; LVRT algorithms; power system stability; energy penetration; stringent grid codes; power quality

Subjects: Reliability; AC-AC power convertors; Wind power plants; Power supply quality and harmonics; d.c. machines; a.c. machines

References

    1. 1)
    2. 2)
    3. 3)
      • 9. ‘Electromagnetic compatibility (EMC) – Part 21: Measurement and Assessment of Power Quality Characteristics of grid Connected Wind Turbines,’ IEC std 61400-21.
    4. 4)
    5. 5)
    6. 6)
      • 1. Altn, M., Goksu, O., Teodorescu, R., Rodriguez, P., Jensen, B.-B., Helle, L.: ‘Overview of recent grid codes for wind power integration’. 12th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), 2010, 2010, pp. 11521160.
    7. 7)
      • 24. Zeng, R., Nian, H., Zhou, P.: ‘A three-phase programmable voltage sag generator for low voltage ride-through capability test of wind turbines’. 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 305311.
    8. 8)
      • 10. Yang, Y., Blaabjerg, F., Zou, Z.: ‘Benchmarking of voltage sag generators’. IECON 2012 – 38th Annual Conf. on IEEE Industrial Electronics Society, 2012, pp. 943948.
    9. 9)
      • 6. ‘Electromagnetic compatibility (EMC) - Part 4–11: Testing and measurement techniques – voltage dips, short interruptions and voltage variations immunity tests,’ IEC std 61000-4-11, 2004.
    10. 10)
    11. 11)
      • 2. Iov, N.C.F., Hansen, A., Sørensen, P.: ‘Mapping of grid faults and grid codes,Risø-R-1617(EN) 41 p.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 21. Friedli, T., Kolar, J., Rodriguez, J., Wheeler, P.: ‘Comparative evaluation of three-phase AC-AC matrix converter and voltage DC-link back-to-back converter systems’, IEEE Trans. Ind. Electron., 2011, PP, (99), pp. 1.
    17. 17)
      • 15. Chung, Y.H., Kwon, G.H., Park, T.B., Lim, G.Y.: ‘Voltage sag and swell generator with thyristor controlled reactor’. Proc. Int. Conf. on Power System Technology, 2002, vol. 3, pp. 19331937.
    18. 18)
      • 7. ‘IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.’ pp. 1–28, 2003.
    19. 19)
      • 18. Wheeler, P.W., Clare, J.C., Apap, M., et al: ‘An integrated 30 kW matrix converter based induction motor drive’. IEEE 36th Conf. on Power Electronics Specialists, 2005, 2005, pp. 23902395.
    20. 20)
      • 17. Oe, S.P., Christopher, E., Sumner, M., Pholboon, S., Johnson, M., Norman, S.A.: ‘Microgrid unbalance compensator – Mitigating the negative effects of unbalanced microgrid operation’. IEEE PES ISGT Europe 2013, 2013, pp. 15.
    21. 21)
    22. 22)
      • 13. Hu, S., Li, J., Xu, H.: ‘Comparison of voltage sag generators for wind power system’. 2009 Asia-Pacific Power and Energy Engineering Conf., 2009, pp. 14.
    23. 23)
    24. 24)
      • 14. Gabe, I.J., Grundling, H.A., Pinheiro, H.: ‘Design of a voltage sag generator based on impedance switching’. IECON 2011 – 37th Annual Conf. of the IEEE Industrial Electronics Society, 2011, pp. 31403145.
    25. 25)
      • 8. ‘IEEE Recommended Practice for Monitoring Electric Power Quality.’ pp. vol., no., p. i, 1995.
    26. 26)
      • 3. Senturk, O.S., Hava, A.M.: ‘A simple sag generator using SSRs’. 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 40494056.
    27. 27)
      • 27. Alesina, A., Venturini, M.: ‘Intrinsic amplitude limits and optimum design of 9-switches direct PWM AC-AC converters’. PESC'88, 1988, pp. 12841291.
    28. 28)
      • 11. Wessels, C., Lohde, R., Fuchs, F.W.: ‘Transformer based voltage sag generator to perform LVRT and HVRT tests in the laboratory’. Proc. of 14th Int. Power Electronics and Motion Control Conf., EPE-PEMC 2010, 2010, pp. T118–T11–13.
    29. 29)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0065
Loading

Related content

content/journals/10.1049/iet-pel.2014.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading