access icon free Magnetically coupled high-gain Y-source isolated DC/DC converter

A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push–pull circuit with voltage-doubling rectification. The converter's voltage gain is presently not matched by any other converter operating at the same switch duty ratio. The converter also has more degrees of freedom in design for setting the desired gain than other converters, and hence can better meet the demands of many applications. The operating principles of the converter have been analysed mathematically, and are verified by both simulation and experiment.

Inspec keywords: electric impedance; switching convertors; switches; DC-DC power convertors

Other keywords: degrees of freedom; short inductive charging time; high-voltage gain; magnetically coupled high-gain V-source isolated DC-DC converter; galvanic isolation; Y-source impedance network; two-switch push-pull circuit; power 250 W to 2 kW; voltage-doubling rectiflcation

Subjects: Relays and switches; Power electronics, supply and supervisory circuits; DC-DC power convertors

References

    1. 1)
    2. 2)
    3. 3)
      • 12. Zhang, F., Peng, F.Z., Qian, Z.: ‘Z-H converter’. Proc. PESC 2008, June 2008, pp. 10041007.
    4. 4)
      • 17. Li, Y., Anderson, J., Peng, F.Z., Liu, D.: ‘Quasi Z-source inverter for photovoltaic power generation systems’. Proc. IEEE APEC, 2009, pp. 918924.
    5. 5)
      • 18. Swihart, M.A.: ‘Inductor cores – material and shape choices’. Available at http://www.mag-inc.com.
    6. 6)
    7. 7)
    8. 8)
      • 19. McLyman, C.W.T.: ‘Transformer and inductor design handbook’ (Marcel Dekker Inc., New York, 1988, 2nd edn.).
    9. 9)
      • 10. Siwakoti, Y.P., Town, G.: ‘Improved modulation technique for voltage fed quasi-Z-source DC/DC converters’. Proc. APEC 2014 (accepted), March 2014.
    10. 10)
      • 15. Asano, M., Abe, D., Koizumi, H.: ‘A common ground Z-source buck-boost converter’. Proc. ISCAS 2011, May 2011, pp. 490493.
    11. 11)
      • 4. Siwakoti, Y.P., Town, G.: ‘Improved modulation technique for voltage fed quasi z-source DC/DC converters’. Proc. APEC 2014, March 2014, pp. 19731978.
    12. 12)
      • 11. Nguyen, M.K., Phan, Q.D., Nguyen, V.N., Lim, Y.C., Park, J.K.: ‘Trans-Z-source-based isolated DC-DC converters’. Proc. ISIE 2013, May 2013, pp. 16.
    13. 13)
      • 6. Available at http://www.emersonnetworkpower.com/en-US/About/newsroom/NewsReleases/Pages/Key-Applications-400VDC-Power-Technology.aspx.
    14. 14)
      • 5. An electric power research institute (EPRI) white paper on DC power production, delivery and utilization, June 2006.
    15. 15)
      • 13. Cao, D., Peng, F.Z.: ‘A family of Z-source and quasi-Z-source DC-DC converters’. Proc. APEC 2009, February 2009, pp. 10971101.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 8. Du, Y., Lukic, S., Jacobson, B., Huang, A.: ‘Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure’. Proc. Energy Conversion Congress and Exposition (ECCE), 17–22 September 2011, pp. 553560.
    20. 20)
      • 14. Cha, H., Peng, F.Z., Yoo, D.: ‘Z-source resonant DC/DC converter for wide input voltage and load variation’. Proc. IPEC 2010, June 2010, pp. 9951000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0957
Loading

Related content

content/journals/10.1049/iet-pel.2013.0957
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading