access icon free Shunt semi-active power factor correction circuit for permanent magnet synchronous motor driver

This study developed a shunt-based, semi-active power factor correction (PFC) circuit for a sensor-less speed controller applicable in permanent magnet synchronous motors (PMSM). The objective of this novel approach is to increase the PF of the control circuit in order to improve the effectiveness of controlling the speed of the motor. The proposed circuit includes two parallel rectifiers capable of providing good PFC while maintaining simplicity. This study discusses the relevant theories, introduces the components and provides a simulation of the system. Experimental results, involving a sensor-less PMSM rotary compressor for an air conditioning unit, demonstrate the efficacy of the proposed device over a wide range of speeds and duty times. The performance was further compared with two other circuits, the results of which prove that this system accomplished the objectives of the study.

Inspec keywords: angular velocity control; power factor correction; permanent magnet motors; synchronous motor drives; sensorless machine control

Other keywords: PMSM; sensorless speed controller; sensorless PMSM rotary compressor; air conditioning unit; PFC circuit; permanent magnet synchronous motor driver; shunt semiactive power factor correction circuit

Subjects: Synchronous machines; Velocity, acceleration and rotation control; Drives; Control of electric power systems

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 18. SPECTRUM DIGITAL: ‘eZdsp TM LF2407A Technical Reference’, 2003.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 19. TEXAS INSTRUMENTS: ‘TMS320LF/LC240xA DSP controllers reference guide system and peripherals’. Literature No. SPRU357C, revised May 2006.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 31. Alter, D.M.: ‘Getting started in C and assembly code with the TMS320LF240x DSP’. Application Report SPRA755A, July 2002, pp. 611.
    13. 13)
    14. 14)
    15. 15)
      • 2. Chern, T.-L., Liu, L.-H., Pan, P.-L., Lee, Y.-J.: ‘Single stage flyback converter for constant current output LED driver with power factor correction’. IEEE Fourth Conf. Industrial Electronics and Applications ICIEA, May 2009, pp. 28912896.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 30. Datasheet: ‘6n137’. Fairchild Semiconductor Corporation, January 2011.
    21. 21)
      • 1. Chern, T.-L., Huang, T.-M., Wu, W.-Y., Lin, W.-M., Hwang, G.-S.: ‘Design of LED driver circuits with single-stage PFC in CCM and DCM’. IEEE Sixth Conf. Industrial Electronics and Applications ICIEA, June 2011, pp. 23582363.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 3. Chern, T.-L., Liu, L.-H., Huang, C.-N., Chern, Y.-L., Kuang, J.-H.: ‘High power factor flyback converter for LED driver with boundary conduction mode control’. IEEE Fourth Conf. Industrial Electronics and Applications ICIEA, May 2009, pp. 20882093.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 29. Datasheet: ‘tlp250’. http://www.alldatasheet.com/datasheet-pdf/pdf/32418/TOSHIBA/TLP250.html.
    31. 31)
      • 22. Ranjbar, A.H., Abdi, B., Gharehpetian, G.B., Fahimi, B.: ‘A comparative study of reliability in single and two stage PFC’, Int. Rev. Electr. Eng. (IREE), 2010, 5, (5), pp. 19071915.
    32. 32)
    33. 33)
    34. 34)
      • 25. Sundareswaran, K., Devi, V., Sankar, S., Nayak, P.S.R., Peddapati, S.: ‘Feedback controller design for a boost converter through evolutionary algorithms’, IET Power Electron., 2013, 6, (9), pp. 266275.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0713
Loading

Related content

content/journals/10.1049/iet-pel.2013.0713
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading