access icon free Discrete pulse frequency modulation control with sliding-mode implementation on LLC resonant DC/DC converter via input–output linearisation

In this study, a novel discrete pulse frequency modulation with sliding-mode control (SMC) implementation of LLC resonant converter is proposed. SMC is employed to cope with the variable dynamic characteristics of LLC resonant converter. The control-oriented dynamic model is first developed by extended describing function method. In order to achieve an optimised output voltage dynamic response, the sliding surface is derived based on the input–output linearisation concept. The proposed sliding-mode controller provides inherent strong robustness against the dynamic drift issues. Meanwhile, the digital SMC signal is insensitive to the non-linear parasitic capacitor of optocoupler. Furthermore, the dynamic performances are significantly improved for the applications of strict dynamic requirements. The theoretical analysis and the attractive dynamic performance are verified by simulation and experimental results.

Inspec keywords: pulse frequency modulation; power capacitors; linearisation techniques; variable structure systems; DC-DC power convertors; resonant power convertors; dynamic response

Other keywords: control-oriented dynamic model; input-output linearisation; extended describing function method; dynamic drift issues; discrete pulse frequency modulation control; input-output linearisation concept; output voltage dynamic response optimization; digital SMC signal; SMC; sliding-mode control implementation; LLC resonant DC-DC converter; strong robustness; variable dynamic characteristics; optocoupler nonlinear parasitic capacitor

Subjects: Control system analysis and synthesis methods; Power electronics, supply and supervisory circuits; Multivariable control systems; Control of electric power systems; Nonlinear network analysis and design; Modulation and coding methods; Capacitors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 15. Yang, B.: ‘Topology investigation for front end DC/DC power conversion for distributed power systems’. PhD dissertation, Virginia Tech, Blacks-burg, VA, 2003.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 15. Yang, B.: ‘Topology investigation for front end DC/DC power conversion for distributed power systems’. PhD dissertation, Virginia Tech, Blacks-burg, VA, 2003.
    24. 24)
      • 14. Beiranvand, R., Zolghadri, B.R., Zolghadri, M.R., Alavi, S.M.H.: ‘Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 462472 (doi: 10.1109/TPEL.2010.2068563).
    25. 25)
      • 4. Jang, J., Joung, M., Choi, B., Hong, S., Lee, S.: ‘Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations’, IET. Power Electron., 2012, 5, (6), pp. 755764 (doi: 10.1049/iet-pel.2011.0289).
    26. 26)
      • 6. Zhang, J., Wang, J., Zhang, G., Qian, Z.: ‘A hybrid driving scheme for full-bridge synchronous rectifier in LLC resonant converter’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 45494561 (doi: 10.1109/TPEL.2011.2180027).
    27. 27)
      • 28. Castilla, M., de Vicuña, L.G., Matas, J., Miret, J., Vasquez, J.C.: ‘A comparative study of sliding-mode control schemes for quantum series resonant inverter’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 34873495 (doi: 10.1109/TIE.2009.2022517).
    28. 28)
      • 21. Hung, J.Y., Gao, W., Hung, J.C.: ‘Variable structure control: a survey’, IEEE Trans. Ind. Electron., 1993, 40, (1), pp. 222 (doi: 10.1109/41.184817).
    29. 29)
      • 13. Beiranvand, R., Zolghadri, M.R., Rashidian, B., Alavi, S.M.H.: ‘Optimizing the LLC–LC resonant converter topology for wide-output-voltage and wide-output-load applications’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31923204 (doi: 10.1109/TPEL.2011.2143429).
    30. 30)
      • 31. Sosa, J.L., Castilla, M., Miret, J., de Vicuña, L.G., Moreno, L.S.: ‘Sliding-mode input–output linearization controller for the DC/DC ZVS CLL-T resonant converter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 15541564 (doi: 10.1109/TIE.2011.2161253).
    31. 31)
      • 10. Kim, D., Kim, C., Moon, G.: ‘High-efficiency slim adapter with low-profile transformer structure’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 34453449 (doi: 10.1109/TIE.2011.2170395).
    32. 32)
      • 26. Chen, Z.: ‘PI and sliding mode control of a cuk converter’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36953703 (doi: 10.1109/TPEL.2012.2183891).
    33. 33)
      • 7. Liu, Y., Pratt, A., Kumar, P., Xu, M., Lee, F.C.: ‘390 V input VRM for high efficiency server power architecture’. Proc. IEEE APEC'07, 2007, pp. 16191624.
    34. 34)
      • 34. Chang, C., Chang, E., Cheng, C., Cheng, H., Lin, S.: ‘Small signal modeling of LLC resonant converters based on extended describing function’. Proc. IEEE Int. Symp. on Computer, Consumer and Control'12, 2012, pp. 365368.
    35. 35)
      • 22. Tan, S., Lai, Y.M., Tse, C.K., Cheung, M.K.H.: ‘A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13791392 (doi: 10.1109/TPEL.2005.857556).
    36. 36)
      • 20. Utkin, V.: ‘Variable structure systems with sliding modes’, IEEE Trans. Autom. Control, 1977, AC-22, (2), pp. 212222 (doi: 10.1109/TAC.1977.1101446).
    37. 37)
      • 5. Hong, S.W., Kim, H.J., Park, J., et al: ‘Secondary-side LLC resonant controller IC with dynamic PWM dimming and dual-slope clock generator for LED backlight units’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 34103422 (doi: 10.1109/TPEL.2011.2142326).
    38. 38)
      • 29. Castilla, M., de Vicuña, L.G., Guerrero, J.M., Matas, J., Miret, J.: ‘Sliding-mode control of quantum series-parallel resonant converters via input-output linearization’, IEEE Trans. Ind. Electron., 2005, 52, (2), pp. 566575 (doi: 10.1109/TIE.2005.844256).
    39. 39)
      • 32. Groves, J.: ‘Small-signal analysis using harmonic balance methods’. Proc. IEEE Power Electronics Specialists Conference'91, 1991, pp. 7479.
    40. 40)
      • 11. De Simone, S., Adragna, C., Spini, C., Gattavari, G.: ‘Design-oriented steady-state analysis of LLC resonant converters based on FHA’. Proc. IEEE Symp. Power Electrical Devices, Automation and Motion 2006, 2006, pp. 200207.
    41. 41)
      • 19. Jang, J., Kumar, P.S., Kim, D., Choi, B.: ‘Average current-mode control for LLC series resonant dc-to-dc converters’. Proc. IEEE International Power Electronics and Motion Control Conference'12, 2012, pp. 923930.
    42. 42)
      • 8. Nan, Z., Xu, M., Sun, J., Han, W., Yao, Y.: ‘Novel DC-DC architecture for high efficiency SMPS with multiple outputs’. Proc. IEEE ECCE'10, 2010, pp. 37193726.
    43. 43)
      • 16. Joung, M., Kim, H., Lee, J.B.: ‘Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system’. Proc. IEEE Applied Power Electronics Conference'12, 2012, pp. 12921297.
    44. 44)
      • 25. Wai, R., Shih, L.: ‘Design of voltage tracking control for DC–DC boost converter via total sliding-mode technique’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 25022511 (doi: 10.1109/TIE.2010.2066539).
    45. 45)
      • 2. Feng, W., Mattavelli, P., Lee, F.C.: ‘Pulsewidth locked loop (PWLL) for automatic resonant frequency tracking in LLC DC–DC transformer (LLC-DCX)’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 18621869 (doi: 10.1109/TPEL.2012.2210912).
    46. 46)
      • 1. Yang, B., Lee, F.C.: ‘LLC resonant converter for front end DC/DC conversion’. Proc. IEEE Applied Power Electronics Conf.’02, 2002, pp. 11081112.
    47. 47)
      • 17. Kurokawa, F., Murata, K.: ‘A new quick response digital modified P-I-D control LLC resonant converter for DC power supply system’. Proc. IEEE PEDS'11, 2011, pp. 3539.
    48. 48)
      • 24. Song, T., Chung, H.S.: ‘Boundary control of boost converters using state-energy plane’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 551563 (doi: 10.1109/TPEL.2007.915765).
    49. 49)
      • 23. Tan, S., Lai, Y.M., Cheung, M.K.H., Tse, C.K.: ‘On the practical design of a sliding mode voltage controlled buck converter’, IEEE Trans. Power Electron., 2005, 20, (2), pp. 425437 (doi: 10.1109/TPEL.2004.842977).
    50. 50)
      • 18. Jang, J., Joung, M., Choi, S., Choi, Y., Choi, B.: ‘Current mode control for LLC series resonant dc-to-dc converters’. Proc. IEEE Applied Power Electronics Conference'11, 2011, pp. 2127.
    51. 51)
      • 27. Castilla, M., de Vicuña, L.G., López, M., López, O., Matas, J.: ‘On the design of sliding mode control schemes for quantum resonant converters’, IEEE Trans. Power Electron., 2000, 15, (6), pp. 960973 (doi: 10.1109/63.892701).
    52. 52)
      • 30. Castilla, M., de Vicuña, L.G., López, M., López, O., Matas, J.: ‘Dynamic response optimization of quantum series-parallel resonant converters using sliding mode control’. Proc. IEEE Power Electronics Specialists Conference'00, 2000, pp. 702707.
    53. 53)
      • 33. Yang, E.X., Lee, F.C., Jovanovic, M.M.: ‘Small-signal modeling of LCC resonant converter’. Proc. IEEE PESC'92, 1992, pp. 941948.
    54. 54)
      • 3. Feng, W., Mattavelli, P., Lee, F.C.: ‘Simplified optimal trajectory control (SOTC) for LLC resonant converters’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 24152426 (doi: 10.1109/TPEL.2012.2212213).
    55. 55)
      • 9. Kim, B., Park, K., Kim, C., Lee, B., Moon, G.: ‘LLC resonant converter with adaptive link-voltage variation for a high-power-density adapter’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 22482252 (doi: 10.1109/TPEL.2010.2050906).
    56. 56)
      • 12. Fang, X., Hu, H., Shen, Z.J., Batarseh, I.: ‘Operation mode analysis and peak gain approximation of the LLC resonant converter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 19851995 (doi: 10.1109/TPEL.2011.2168545).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0399
Loading

Related content

content/journals/10.1049/iet-pel.2013.0399
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading