Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review of predictive control methods to improve the input current of an indirect matrix converter

The experimental implementation and performance analysis of control techniques applied to an indirect matrix converter are presented here, to improve the input current behaviour under resonances and harmonics distortions. The control strategies are based on model predictive control, which uses the commutation state of the converter in the subsequent sampling time, according to an optimisation algorithm given by a simple cost function and the discrete system model. Experimental results with a laboratory prototype are provided in order to validate the different control schemes, and the effects of a distorted source voltage and filter resonance are analysed.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 35. Xia, C., Yan, Y., Song, P., Shi, T.: ‘Voltage disturbance rejection for matrix converter-based PMSM drive system using internal model control’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 361372 (doi: 10.1109/TIE.2011.2134058).
    36. 36)
      • 16. Friedli, T., Kolar, J.: ‘Comprehensive comparison of three-phase ac–ac matrix converter and voltage dc-link back-to-back converter systems’. 2010 Int. Power Electronics Conf. (IPEC), June 2010, pp. 27892798.
    37. 37)
      • 20. Rodriguez, J., Rivera, M., Kolar, J., Wheeler, P.: ‘A review of control and modulation methods for matrix converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 5870 (doi: 10.1109/TIE.2011.2165310).
    38. 38)
      • 7. Bucknall, R., Ciaramella, K.: ‘On the conceptual design and performance of a matrix converter for marine electric propulsion’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14971508 (doi: 10.1109/TPEL.2009.2037961).
    39. 39)
      • 21. Dabour, S.: ‘Analysis and implementation of space-vector-modulated three-phase matrix converter’, IET Power Electron., 2012, 5, pp. 13741378[Online]. Available at: http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0014 (doi: 10.1049/iet-pel.2012.0014).
    40. 40)
      • 4. Correa, P., Rodriguez, J., Rivera, M., Espinoza, J., Kolar, J.: ‘Predictive control of an indirect matrix converter’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18471853 (doi: 10.1109/TIE.2009.2013686).
    41. 41)
      • 18. Liu, X., Loh, P.C., Wang, P., Han, X.: ‘Improved modulation schemes for indirect z-source matrix converter with sinusoidal input and output waveforms’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 40394050 (doi: 10.1109/TPEL.2012.2188415).
    42. 42)
      • 36. Rivera, M., Rodriguez, J., Espinoza, J., Abu-Rub, H.: ‘Instantaneous reactive power minimization and current control for an indirect matrix converter under a distorted ac supply’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 482490 (doi: 10.1109/TII.2012.2194159).
    43. 43)
      • 28. Preindl, M., Bolognani, S.: ‘Model predictive direct speed control with finite control set of PMSM drive systems’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 10071015 (doi: 10.1109/TPEL.2012.2204277).
    44. 44)
      • 8. Yamamoto, E., Kume, T., Hara, H., Uchino, T., Kang, J., Krug, H.: ‘Development of matrix converter and its applications in industry’. 35th Annual Conf. on IEEE Industrial Electronics Society IECON 2009, Porto, Portugal, 2009.
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • 46. Rivera, M., Rodriguez, J., Espinoza, J., et al: ‘Imposed sinusoidal source and load currents for an indirect matrix converter’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 34273435 (doi: 10.1109/TIE.2011.2172171).
    53. 53)
      • 15. Cardenas, R., Peña, R., Wheeler, P., Clare, J.: ‘Experimental validation of a space-vector-modulation algorithm for four-leg matrix converters’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12821293 (doi: 10.1109/TIE.2010.2068531).
    54. 54)
      • 11. Lu, X., Sun, K., Li, G., Huang, L.: ‘Analysis and control of input power factor in indirect matrix converter’. 35th Annual Conf. IEEE on Industrial Electronics, 2009, IECON ‘09, November 2009, pp. 207212.
    55. 55)
      • 24. Correa, P., Rodriguez, J., Lizama, I., Andler, D.: ‘A predictive control scheme for current-source rectifiers’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 18131815 (doi: 10.1109/TIE.2008.2010116).
    56. 56)
      • 23. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: ‘Model predictive control, a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838 (doi: 10.1109/TIE.2008.2008349).
    57. 57)
      • 3. Kolar, J., Friedli, T., Krismer, F., Round, S.: ‘The essence of three-phase ac/ac converter systems’. 13th Power Electronics and Motion Control Conf., 2008, EPE-PEMC 2008, September 2008, pp. 2742.
    58. 58)
      • 26. Miranda, H., Cortes, P., Yuz, J., Rodriguez, J.: ‘Predictive torque control of induction machines based on state-space models’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 19161924 (doi: 10.1109/TIE.2009.2014904).
    59. 59)
      • 30. Muller, S., Ammann, U., Rees, S.: ‘New time-discrete modulation scheme for matrix converters’, IEEE Trans. Ind. Electron., 2005, 52, (6), pp. 16071615 (doi: 10.1109/TIE.2005.858713).
    60. 60)
      • 5. Zanchetta, P., Wheeler, P., Clare, J., Bland, M., Empringham, L., Katsis, D.: ‘Control design of a three-phase matrix-converter-based ac/ac mobile utility power supply’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 209217 (doi: 10.1109/TIE.2007.903974).
    61. 61)
      • 40. Li, Y.W., Wu, B., Zargari, N., Wiseman, J., Xu, D.: ‘Damping of PWM current-source rectifier using a hybrid combination approach’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 13831393 (doi: 10.1109/TPEL.2007.900499).
    62. 62)
      • 19. Rivera, M., Wilson, A., Rojas, C., et al: ‘A comparative assessment of model predictive current control and space vector modulation in a direct matrix converter’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 578588 (doi: 10.1109/TIE.2012.2206347).
    63. 63)
      • 45. Rivera, M., Rodriguez, J., Wu, B., Espinoza, J., Rojas, C.: ‘Current control for an indirect matrix converter with filter resonance mitigation’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 7179 (doi: 10.1109/TIE.2011.2165311).
    64. 64)
      • 37. Cortes, P., Kouro, S., La Rocca, B., et al: ‘Guidelines for weighting factors design in model predictive control of power converters and drives’. IEEE Int. Conf. on Industrial Technology, 2009, (ICIT 2009), February 2009, pp. 17.
    65. 65)
      • 22. Li, X.: ‘Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages’, IET Power Electron., 2013, 6, pp. 434445[Online]. Available at: http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0361 (doi: 10.1049/iet-pel.2012.0361).
    66. 66)
      • 42. Mariethoz, S., Morari, M.: ‘Explicit model-predictive control of a PWM inverter with an LCL filter’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 389399 (doi: 10.1109/TIE.2008.2008793).
    67. 67)
      • 31. Vargas, R., Rodriguez, J., Ammann, U., Wheeler, P.: ‘Predictive current control of an induction machine fed by a matrix converter with reactive power control’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43624371 (doi: 10.1109/TIE.2008.2006947).
    68. 68)
      • 12. Jussila, M., Tuusa, H.: ‘Comparison of simple control strategies of space-vector modulated indirect matrix converter under distorted supply voltage’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 139148 (doi: 10.1109/TPEL.2006.886654).
    69. 69)
      • 9. Liu, X., Loh, P.C., Wang, P., Blaabjerg, F., Tang, Y., Al-Ammar, E.: ‘Distributed generation using indirect matrix converter in reverse power mode’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 10721082 (doi: 10.1109/TPEL.2012.2209205).
    70. 70)
      • 2. Wijekoon, T., Klumpner, C., Wheeler, P.: ‘Implementation of a hybrid ac/ac direct power converter with unity voltage transfer ratio’. Applied Power Electronics Conference and Exposition, 2006. APEC'06. Twenty-First Annual IEEE, March 2006, pp.7.
    71. 71)
      • 29. Rivera, M.: ‘Methods of source current reference generation for predictive control in a direct matrix converter’, IET Power Electron., 2013, 6, pp. 894901[Online]. Available at: http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2012.0357 (doi: 10.1049/iet-pel.2012.0357).
    72. 72)
      • 48. Casadei, D., Serra, G., Tani, A.: ‘A general approach for the analysis of the input power quality in matrix converters’, IEEE Trans. Power Electron., 1998, 13, (5), pp. 882891 (doi: 10.1109/63.712295).
    73. 73)
      • 34. Sun, Y., Su, M., Li, X., Wang, H., Gui, W.: ‘A general constructive approach to matrix converter stabilization’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 418431 (doi: 10.1109/TPEL.2012.2199767).
    74. 74)
      • 44. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: ‘A new single-phase PLL structure based on second order generalized integrator’. 37th IEEE Power Electronics Specialists Conf., 2006 (PESC ’06), 2006, pp. 16.
    75. 75)
      • 1. Wheeler, P., Rodriguez, J., Clare, J., Empringham, L., Weinstein, A.: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288 (doi: 10.1109/41.993260).
    76. 76)
      • 43. Rivera, M., Correa, P., Rodriguez, J., Lizama, I., Espinoza, J.: ‘Predictive control of the indirect matrix converter with active damping’. IEEE Sixth Int. Power Electronics and Motion Control Conf., 2009 (IPEMC ’09), May 2009, pp. 17381744.
    77. 77)
      • 49. Blaabjerg, F., Casadei, D., Klumpner, C., Matteini, M.: ‘Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 289296 (doi: 10.1109/41.993261).
    78. 78)
      • 13. Pena, R., Cardenas, R., Reyes, E., Clare, J., Wheeler, P.: ‘A topology for multiple generation system with doubly fed induction machines and indirect matrix converter’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 41814193 (doi: 10.1109/TIE.2009.2028353).
    79. 79)
      • 14. Lee, M.Y., Wheeler, P., Klumpner, C.: ‘Space-vector modulated multilevel matrix converter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33853394 (doi: 10.1109/TIE.2009.2038940).
    80. 80)
      • 25. Cortes, P., Ortiz, G., Yuz, J., Rodriguez, J., Vazquez, S., Franquelo, L.: ‘Model predictive control of an inverter with output LC filter for UPS applications’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18751883 (doi: 10.1109/TIE.2009.2015750).
    81. 81)
      • 39. Wiseman, J., Wu, B.: ‘Active damping control of a high-power PWM current-source rectifier for line-current THD reduction’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 758764 (doi: 10.1109/TIE.2005.843939).
    82. 82)
      • 47. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: ‘Delay compensation in model predictive current control of a three-phase inverter’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 13231325 (doi: 10.1109/TIE.2011.2157284).
    83. 83)
      • 33. Xia, C., Song, P., Shi, T., Yan, Y.: ‘Chaotic dynamics characteristic analysis for matrix converter’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 7887 (doi: 10.1109/TIE.2012.2186105).
    84. 84)
      • 10. Ortega, M.: ‘Control of indirect matrix converter with bidirectional output stage for micro-turbine’, IET Power Electron., 2012, 5, pp. 659668[Online]. Available at:http://digital-library.theiet.org/content/journals/10.1049/iet-pel.2011.0210 (doi: 10.1049/iet-pel.2011.0210).
    85. 85)
      • 38. Casadei, D., Clare, J., Empringham, L., et al: ‘Large-signal model for the stability analysis of matrix converters’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 939950 (doi: 10.1109/TIE.2007.891999).
    86. 86)
      • 32. Wu B.: ‘High-power converters and AC drives’, 2006.
    87. 87)
      • 27. Preindl, M., Schaltz, E., Thogersen, P.: ‘Switching frequency reduction using model predictive direct current control for high-power voltage source inverters’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28262835 (doi: 10.1109/TIE.2010.2072894).
    88. 88)
      • 50. Timbus, A., Rodriguez, P., Teodorescu, R., Liserre, M., Blaabjerg, F.: ‘Control strategies for distributed power generation systems operating on faulty grid’, 2006 IEEE Int. Symp. Ind. Electron., 2006, 2, pp. 16011607 (doi: 10.1109/ISIE.2006.295711).
    89. 89)
      • 6. Lopez Arevalo, S., Zanchetta, P., Wheeler, P., Trentin, A., Empringham, L.: ‘Control and implementation of a matrix-converter-based ac ground power-supply unit for aircraft servicing’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20762084 (doi: 10.1109/TIE.2009.2034180).
    90. 90)
      • 17. Kolar, J., Schafmeister, F., Round, S., Ertl, H.: ‘Novel three-phase ac/ac sparse matrix converters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 16491661 (doi: 10.1109/TPEL.2007.904178).
    91. 91)
      • 41. Li, Y.W.: ‘Control and resonance damping of voltage-source and current-source converters with LC filters’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 15111521 (doi: 10.1109/TIE.2008.2009562).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0327
Loading

Related content

content/journals/10.1049/iet-pel.2013.0327
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address