Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis, design and implementation of isolated bidirectional converter with winding-cross-coupled inductors for high step-up and high step-down conversion system

In this study, a zero voltage switching (ZVS) isolated bidirectional DC/DC converter is proposed for high step-up and high step-down conversion systems. In the low voltage side, an interleaved Buck and Boost converter is employed to reduce the current ripple and improve the power level. In the high voltage side, a modified three-level structure is adopted to bring each power switch sustain half of the high bus voltage, which makes the low voltage rated MOSFETs available for the performance improvement. Two coupled inductors are interleaved in the low voltage side and in series in the high voltage side, which can not only serve as the filter inductors for the current ripple cancellation, but also as the transformer for isolation, which is named as winding-cross-coupled inductors. As a result, the magnetic size can be reduced to enhance the power density. ZVS operation is ensured from light load to full load conditions by the advanced pulse width modulation plus phase shift control strategy. The voltage regulation and transferred power are decoupled for easy design and implementation. Finally, a 1.5 kW 48 V/800 V prototype is built to verify the effectiveness of the proposed converter.

References

    1. 1)
      • 9. Chen, G., Lee, Y.S., Hui, S.Y., Xu, D., Wang, Y.: ‘Actively clamped bidirectional flyback converter’, IEEE Trans. Power Electron., 2000, 47, (4), pp. 770779.
    2. 2)
      • 3. Boroyevich, D., Cvetkovic, I., Dong, D., Burgos, R., Wang, F., Lee, F.C.: ‘Future electronic power distribution systems a contemplative view’. IEEE OPTIM'10, 2010, pp. 13691380.
    3. 3)
      • 24. Wu, T.F., Chen, Y.C., Yang, J.G., Kuo, C.L.: ‘Isolated bidirectional full-bridge DC–DC converter with a flyback snubber’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 19151922 (doi: 10.1109/TPEL.2010.2042304).
    4. 4)
      • 20. Tao, H., Duarte, J.L., Hendrix, M.A.M.: ‘Line-interactive UPS using a fuel cell as the primary source’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 30123021 (doi: 10.1109/TIE.2008.918472).
    5. 5)
      • 1. Sun, K., Zhang, L., Xing, Y., Guerrero, J.M.: ‘A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 30323045 (doi: 10.1109/TPEL.2011.2127488).
    6. 6)
      • 7. Zhou, H., Khambadkone, A.M.: ‘Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application’, IEEE Trans. Ind. Appl., 2009, 45, (4), pp. 14341442 (doi: 10.1109/TIA.2009.2023493).
    7. 7)
      • 18. Huang, R., Mazumder, S.K.: ‘A soft-switching scheme for an isolated DC/DC converter with pulsating DC output for a three-phase high-frequency-link PWM converter’, IEEE Trans. Power Electron., 2009, 24, (10), pp. 22762288 (doi: 10.1109/TPEL.2009.2022755).
    8. 8)
      • 17. Tan, N.M.L., Inoue, S., Kobayashi, A., Akagi, H.: ‘Voltage balancing of a 320-V, 12-F electric double-layer capacitor bank combined with a 10-kW bidirectional isolated DC–DC converter’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 27552765 (doi: 10.1109/TPEL.2008.2005388).
    9. 9)
      • 22. Jalbrzykowski, S., Bogdan, A., Citko, T.: ‘A dual full-bridge resonant class-E bidirectional DC–DC converter’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 38793883 (doi: 10.1109/TIE.2010.2100335).
    10. 10)
      • 15. Li, H., Peng, F.Z., Lawler, J.S.: ‘A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 525535 (doi: 10.1109/TIA.2003.808965).
    11. 11)
      • 8. De Doncker, R.W.A.A., Divan, D.M., Kheraluwala, M.H.: ‘A three-phase soft-switched high-power-density dc/dc converter for high power applications’, IEEE Trans. Ind. Appl., 1991, 27, (1), pp. 6373 (doi: 10.1109/28.67533).
    12. 12)
      • 12. Nasiri, A., Nie, Z., Bekiarov, S.B., Emadi, A.: ‘An on-line UPS system with power factor correction and electric isolation using BIFRED converter’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 722730 (doi: 10.1109/TIE.2007.911199).
    13. 13)
      • 21. Li, X., Bhat, A.K.S.: ‘Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 850862 (doi: 10.1109/TPEL.2009.2034662).
    14. 14)
      • 4. Yang, B., Li, W., Gu, Y., Cui, W., He, X.: ‘Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 752762 (doi: 10.1109/TPEL.2011.2160359).
    15. 15)
      • 27. Choe, G.Y., Kim, J.S., Kang, H.S., Lee, B.K.: ‘An optimal design methodology of an interleaved boost converter for fuel cell application’, J. Electr. Eng. Technol., 2010, 5, (2), pp. 319328 (doi: 10.5370/JEET.2010.5.2.319).
    16. 16)
      • 10. Chung, H.S., Cheung, W.L., Tang, K.S.: ‘A ZCS bidirectional flyback DC/DC converter’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 1426434 (doi: 10.1109/TPEL.2004.836643).
    17. 17)
      • 19. Bai, H., Nie, Z., Mi, C.: ‘Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional DC–DC converters’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14441449 (doi: 10.1109/TPEL.2009.2039648).
    18. 18)
      • 23. Zhu, L.: ‘A novel soft-commutating isolated boost full-bridge ZVS-PWM DC–DC converter for bidirectional high power applications’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 422429 (doi: 10.1109/TPEL.2005.869730).
    19. 19)
      • 5. Tan, N.M.L., Abe, T., Akagi, H.: ‘Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12371248 (doi: 10.1109/TPEL.2011.2108317).
    20. 20)
      • 26. Xu, D., Zhao, C., Fan, H.: ‘A PWM plus phase-shift control bidirectional DC-DC converter’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 666675 (doi: 10.1109/TPEL.2004.826485).
    21. 21)
      • 13. Peng, F.Z., Li, H., Su, G.J., Lawler, J.S.: ‘A new ZVS bidirectional DC-DC converter for fuel cell and battery application’, IEEE Trans. Power Electron., 2004, 19, (1), pp. 5465 (doi: 10.1109/TPEL.2003.820550).
    22. 22)
      • 6. Wai, R.J., Lin, C.Y., Chang, Y.R.: ‘High step-up bidirectional isolated converter with two input power sources’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 26292643 (doi: 10.1109/TIE.2009.2018427).
    23. 23)
      • 25. Xiao, H., Xie, S.: ‘A ZVS bidirectional DC–DC converter with phase-shift plus PWM control scheme’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 813823 (doi: 10.1109/TPEL.2007.915188).
    24. 24)
      • 14. Ma, G., Qu, W., Yu, G., Liu, Y., Liang, N., Li, W.: ‘A zero-voltage-switching bidirectional DC–DC converter with state analysis and soft-switching-oriented design consideration’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 21742184 (doi: 10.1109/TIE.2009.2017566).
    25. 25)
      • 16. Zhang, F., Yan, Y.: ‘Novel forward–flyback hybrid bidirectional DC–DC converter’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 15781584 (doi: 10.1109/TIE.2008.2009561).
    26. 26)
      • 11. Jain, M., Daniele, M., Jain, P.K.: ‘A bidirectional DC–DC converter topology for low power application’, IEEE Trans. Power Electron., 2000, 15, (4), pp. 595606 (doi: 10.1109/63.849029).
    27. 27)
      • 2. Li, W., He, X.: ‘Review of non-isolated high step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250 (doi: 10.1109/TIE.2010.2049715).
    28. 28)
      • 28. Zhao, Y., Li, W., Deng, Y., He, X.: ‘Analysis, design and experimentation of isolated ZVT boost converter with coupled inductors’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 541550 (doi: 10.1109/TPEL.2010.2065815).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0072
Loading

Related content

content/journals/10.1049/iet-pel.2013.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address