http://iet.metastore.ingenta.com
1887

Overview of wireless power transfer technologies for electric vehicle battery charging

Overview of wireless power transfer technologies for electric vehicle battery charging

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a comprehensive review of existing technological solutions for wireless power transfer used in electric vehicle battery chargers is given. The concept of each solution is thoroughly reviewed and the feasibility is evaluated considering the present limitations in power electronics technology, cost and consumer acceptance. In addition, the challenges and advantages of each technology are discussed. Finally, a thorough comparison is made and a proposed mixed conductive/wireless charging system solution is suggested to solve the inherent existing problems.

References

    1. 1)
      • 1. Wu, H.H., Gilchrist, A., Sealy, K., Israelsen, P., Muhs, J.: ‘A review on inductive charging for electric vehicles’. IEEE Int. Electric Machines & Drives Conf. (IEMDC), 2011, pp. 43147.
    2. 2)
      • 2. Khaligh, A., Dusmez, S.: ‘Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles’, IEEE Trans. Veh. Technol., 2012, 61, pp. 34753489 (doi: 10.1109/TVT.2012.2213104).
    3. 3)
      • 3. Yilmaz, M., Krein, P.T.: ‘Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2013, 28, pp. 21512169 (doi: 10.1109/TPEL.2012.2212917).
    4. 4)
      • 4. SAE J1773: ‘SAE electric vehicle inductively coupled charging’, 1999.
    5. 5)
      • 5. SAE J2954: ‘Wireless charging of plug-in vehicle and positioning communication’, 2012.
    6. 6)
      • 6. Boys, J.T., Covic, G.A., Ed., ‘Inductive power transfer systems (IPT) fact sheet: no. 1 – basic concepts’, 2013http://www.qualcomm.com/media/documents/.
    7. 7)
      • 7. Klontz, K.W., Esser, A., Bacon, R.R., Divan, D.M., Novotny, D.W., Lorenz, R.D.: ‘An electric vehicle charging system with 'universal' inductive interface’. IEEE Power Conversion Conf. Yokohama, Japan, 1993, pp. 227232.
    8. 8)
      • 8. Severns, R., Yeow, E., Woody, G., Hall, J., Hayes, J.: ‘An ultra-compact transformer for a 100 W to 120 kW inductive coupler for electric vehicle battery charging’. IEEE Applied Power Electronics Conf. and Exposition (APEC). vol. 1San Jose, California, 1996, pp. 3238.
    9. 9)
      • 9. Kline, M., Izyumin, I., Boser, B., Sanders, S.: ‘Capacitive power transfer for contactless charging’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2011, pp. 13981404.
    10. 10)
      • 10. Zhu, J., Xu, M., Sun, J., Wang, C.: ‘Novel capacitor-isolated power converter’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 18241829.
    11. 11)
      • 11. Liu, C., Hu, A.P., Dai, X.: ‘A contactless power transfer system with capacitively coupled matrix pad’. IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 34883494.
    12. 12)
      • 12. Liu, C., Hu, A.P., Nair, N.K.C., Covic, G.A.: ‘2-D alignment analysis of capacitively coupled contactless power transfer systems’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 652657.
    13. 13)
      • 13. Sekitani, T., Takamiya, M., Noguchi, Y., et al: ‘A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors’. Int. Electron Devices Meeting (IEDM), 2006, pp. 14.
    14. 14)
      • 14. LI, W.: ‘High efficiency wireless power transmission at low frequency using permanent magnet coupling’. Engineering physics. vol. Master of Applied Science Thesis, Vancouver, B.C., Canada, University of British Columbia, 2007, pp. 152.
    15. 15)
      • 15. Whitehead, L.: ‘Systems and methods for dipole enhanced inductive power transfer’ (Canada: UBC, WO 2010/096917 A1, 2010).
    16. 16)
      • 16. Karalis, A., Kurs, A.B., Moffatt, R., Joannopoulos, J.D., Fisher, P.H., Soljacic, M.: ‘Wireless energy transfer’, USA, Massachusetts Institute of Technology, Patent # 7825543, 2008.
    17. 17)
      • 17. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačic, M.: ‘Wireless power transfer via strongly coupled magnetic resonances’, Int. Sci. J., American Association for the Advancement of Science (AAAS), 2007, 317, pp. 8386 (doi: 10.1126/science.1143254).
    18. 18)
      • 18. Waffenschmidt, E.: ‘Inductive wireless power transmission’. Technical Educational Seminar, IEEE Energy Conversion Congress & Exposition, 2011, pp. 1128.
    19. 19)
      • 19. Stielau, O.H., Covic, G.A.: ‘Design of loosely coupled inductive power transfer systems’. Int. Conf. on Power System Technology, PowerCon., 2000, vol. 1, 2000, pp. 8590.
    20. 20)
      • 20. Scudiere, M., McKeever, J.: ‘Wireless power transfer for electric vehicles’, SAE International Technical Paper # 2011-01-0354, 2011.
    21. 21)
      • 21. Farkas, L.: ‘High power wireless resonant energy transfer systemUSA, 2007, Patent # 20080265684.
    22. 22)
      • 22. Farkas, L.: ‘High power wireless resonant energy transfer systemUSA, 2011.
    23. 23)
      • 23. Pandya, R.A., Pandya, A.A.: ‘Wireless charging system for vehiclesUSA, 2008, Patent # 8030888.
    24. 24)
      • 24. Covic, G.A., Boys, J.T.: ‘Power demand management in inductive power transfer systems’, New Zealand, Auckland Uniservices Limited, 2010, Patent Application # PCT/NZ2010/000181.
    25. 25)
      • 25. Huang, C.Y., Boys, J.T., Covic, G.A., Budhia, M.: ‘Practical considerations for designing IPT system for EV battery charging’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2009, pp. 402407.
    26. 26)
      • 26. Wu, H.H., Boys, J.T., Covic, G.A.: ‘An AC processing pickup for IPT systems’, IEEE Trans. Power Electron., 2010, 25, pp. 12751284 (doi: 10.1109/TPEL.2009.2037002).
    27. 27)
      • 27. Huh, J., Lee, S., Park, C., Cho, G.H., Rim, C.T.: ‘High performance inductive power transfer system with narrow rail width for on-line electric vehicles’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 647651.
    28. 28)
      • 28. Lee, S., Huh, J., Park, C., Choi, N.S., Cho, G.H., Rim, C.T.: ‘On-Line Electric Vehicle using inductive power transfer system’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 15981601.
    29. 29)
      • 29. Ahn, S., Kim, J.: ‘Magnetic field design for high efficient and low EMF wireless power transfer in on-line electric vehicle’. Proc. of the Fifth European Conf. on Antennas and Propagation (EUCAP), 2011, pp. 39793982.
    30. 30)
      • 30. Wang, C.S., Stielau, O.H., Covic, G.A.: ‘Design considerations for a contactless electric vehicle battery charger’, IEEE Trans. Ind. Electron., 2005, 52, pp. 13081314 (doi: 10.1109/TIE.2005.855672).
    31. 31)
      • 31. Covic, G.A., Boys, J.T., Kissin, M.L.G., Lu, H.G.: ‘A three-phase inductive power transfer system for roadway-powered vehicles’, IEEE Trans. Ind. Electron., 2007, 54, pp. 33703378 (doi: 10.1109/TIE.2007.904025).
    32. 32)
      • 32. Imura, T., Okabe, H., Hori, Y.: ‘Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings’. IEEE Vehicle Power and Propulsion Conf. (VPPC), 2009, pp. 936940.
    33. 33)
      • 33. Beh, T.C., Imura, T., Kato, M., Hori, Y.: ‘Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching’. IEEE Int. Symp. on Industrial Electronics (ISIE), 2010, pp. 20112016.
    34. 34)
      • 34. Lee, S.H., Lorenz, R.D.: ‘Development and validation of model for 95% efficiency, 220 W wireless power transfer over a 30 cm air-gap’. IEEE Energy Conversion Congress and Exposition (ECCE), 2010, pp. 885892.
    35. 35)
      • 35. Lee, S.H., Lorenz, R.D.: ‘A design methodology for multi-kW, large air-gap, MHz frequency, wireless power transfer systems‘. IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 35033510.
    36. 36)
      • 36. ‘Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz’, Health Canada, Safety Code 6 (2009).
    37. 37)
      • 37. ‘IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz’, IEEE Std C95.1, 1999 Edition.
    38. 38)
      • 38. Icnirp guidelines: for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)’, ICNIRP Publication – Health Phys., 1998, 74, (4), pp. 494522.
    39. 39)
      • 39. ‘Radiation protection standard: maximum exposure levels to radiofrequency fields – 3 kHz to 300 GHz’, Australian Radiation Protection And Nuclear Safety Agency (ARPANSA), Radiation Protection Series Publication No. 3.
    40. 40)
      • 40. Brooker, A., Thornton, M., Rugh, J.: ‘Technology improvement pathways to cost-effective vehicle electrification’, SAE International Technical Paper # 2010-01-0824, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2013.0047
Loading

Related content

content/journals/10.1049/iet-pel.2013.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address